MAXIMAL AMENABILITY OF THE RADIAL SUBALGEBRA
IN FREE QUANTUM GROUP FACTORS

ROLAND VERGNIOUX AND XUMIN WANG

ABSTRACT. We show that the radial MASA in the orthogonal free quantum group algebra
L(FOx) is maximal amenable if N is large enough, using the Asymptotic Orthogonality Prop-
erty. This relies on a detailed study of the corresponding bimodule, for which we construct in
particular a quantum analogue of Radulescu’s basis. As a byproduct we also obtain the value
of the Pukanszky invariant for this MASA.
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INTRODUCTION

The orthogonal free quantum groups FOp, for N € N*, are discrete quantum groups which
were introduced by Wang [Wan95] via their universal C*-algebra defined by generators and
relations:

Ci(FON) = Ao(N) = C*(u;,5,1 <i,j < N |u=1t,uu” =u"u=1).

Here u = (u;;);; is the matrix of generators, u* is the usual adjoint in My (C;;(FOn)), and
4 = (u;;)i,;- There is a natural coproduct A : Cy(FOn) — C(FON) ® Cy(FON) which encodes
the quantum group structure, and which turns C;'(FOy) into a Woronowicz C*-algebra [Wor98].
In particular C(FOy) is equipped with a canonical A-invariant tracial state h. In this article we
are interested in the von Neumann algebra L(FOy) = A(C(FOy))” C B(H) generated by the
image of C;(FOy ) in the GNS representation A associated with h. We still denote u; ; € L(FOy)
the images of the generators.

The von Neumann algebras L£(FOp), and their unitary variants L£(FUy), can be seen as
quantum, or matricial, analogues of the free group factors L(Fy). More precisely if we denote
FOx = (Z/2)*", with canonical generators a;, 1 < i < N, we have a surjective *-homomorphism
7w : Ci(FON) — C:(FON), u;j — 0;;a; compatible with coproducts. It turns out that this
analogy is fruitful also at an analytical level: one can show that £(FOy) shares many properties
with £L(FOp) and L(Fy), although the existence of m, which has a huge kernel, is useless to
prove such properties. For instance, L(FOy) is non amenable for N > 3 [Ban97], and in fact it
is a full and prime II; factor [VV07] without Cartan subalgebras [Isol5]. On the other hand it
is not isomorphic to a free group factor [BV18].

The II; factor M = L(FOx) has a natural “radial” abelian subalgebra, A = x| N M where

X1 =X; = ZJIV u;; is the sum of the diagonal generators. It was shown, already in [Ban97],
that x1/2 is a semicircular variable with respect to h, in particular ||xi|| = 2 in L(FOy). Since
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€(x1) = N in C}(FOy), this implies the non-amenability of FOn for N > 3. The subalgebra
A C M is the quantum analogue of the radial subalgebra of L(Fy), generated by the sum
X1 = Ziv (a; +a) of the generators a; € Fyy and their adjoints, which is known to be a maximal
abelian subalgebra (MASA) since [Pyt81].

The position of A in M was already investigated in [F'V16], where it was shown, for N > 3,
to be a strongly mixing MASA. Note that FOx admits deformations FOg, where Q € My (C)
is an invertible matrix such that QQ = £Iy. When @ is not unitary, the corresponding von
Neumann algebra M = L(FOg) is a type I1I factor, at least for small deformations [VVO07]. One
can still consider the abelian subalgebra A = x{ N M, but if @ is not unitary it is not maximal
abelian anymore, as shown in [KW22]. More precisely, in this case the inclusion A C M is
quasi-split in the sense of [DL84].

The aim of the present article is to pursue the study of [FV16] in the non-deformed case. Our
main result is the following theorem, proved at the end of Section 5. Here, and in the rest of the
article, we fix a free ultrafilter w on N, but the result also holds for the Fréchet filter w = oo.

Theorem A. There exists Ny € N such that if N > Ny the radial subalgebra A C M = L(FOx)
satisfies the Asymptotic Orthogonality Property: for every y € At N M and for every bounded
sequence of elements z, € A+ N M such that Ya € A ||[a, z-]||2 —w 0, we have (yz | z:y) —w O.

The Asymptotic Orthogonality Property (AOP) originates from Popa’s seminal article [Pop83]
where it was established for A = @} C L(Fy), the generator MASA in free group factors, and
proved to imply maximal amenability. It is often stated in a non-symmetric way, for scalar
products of the form (yz, | z/.y’), but the version above is sufficient for our purposes. We can
indeed formulate the following corollary, which is a quantum analogue of the result of [CFRW10)]
about the radial MASA in free group factors.

Corollary B. There exists Ny € N such that if N > Ny the radial subalgebra A C M = L(FOy)
18 maximal amenable: for any amenable subalgebra P C M such that A C P, we have A = P.

Proof. Since A is already known to be a singular MASA by [FV16, Corollary 5.8], this follows
directly from [CFRW10, Corollary 2.3], whose proof uses only “symmetric” scalar products

(yzr | 2ry). O

The proof of Theorem A follows a strategy which can also be traced back to Popa’s work on
the generator MASA of free group factors. One can identify the following ingredients:
(1) a good description of the A, A-bimodule H = ¢?(Fy) ;
(2) a decreasing sequence of subspaces V,,, C H such that, for y € At N M fixed and m big
enough, yV,, LV,y ;
(3) the fact that elements z € A+ N M almost commuting to A are almost supported in V;,.

In the classical case the arguments for each of the above steps rely on the combinatorics of
reduced words in the free group. In the quantum case the techniques are completely different
and consist in performing analysis in the Temperley-Lieb category, which is naturally associated
with FOx as we recall in the preliminary Section 1. We give below more details about the
strategy used for each of the three steps, in the classical and quantum cases, and present the
organization of the article.

The more precise goal for (1) is to exhibit an orthonormal basis W of the A, A-bimodule
A+ N H with good combinatorial properties, which will allow to carry out computations. In
the case of the generator MASA af C L(Fy), this basis is just given by the set of reduced
words in Fy which do not start nor end with a; nor afl. In the case of the radial MASA in
L(Fx), a convenient basis was constructed by Radulescu [Rad91] to show that the radial MASA
is singular with Pukanszky invariant {oo}.

In Section 2 we construct an analogue W = | |,~; W}, of the Radulescu basis for our free
quantum groups. Surprisingly one has to take into account additional symmetries of H given
by the rotation maps py which already played a (minor) role in [FV16]. Using this construction
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and a result from [F'V16], we can already deduce (Corollary 2.13) that the Pukanszky invariant
of the radial MASA in L(FOy) is {oo}, a result that was missing in [FV16].

From 2 € W one can generate a natural C-linear basis (x;;); jen of the cyclic submodule
Az A. In Radulescu’s case, (x; ;) is orthogonal as soon as x € W), with k > 2, and for k =1 it
is nevertheless a Riesz basis. In our case, (z;;) is never orthogonal and we have to show that
it is a Riesz basis, uniformly over x € W. This is accomplished in Section 3, which is the most
challenging technically, and we manage to reach this conclusion only if N is large enough.

The core of the strategy then lies in ingredient (2). In the case of the generator MASA in the
free group factor L(Fy), Vi, is simply the subspace of H generated by the reduced words of Fiy
that begin and end with a “large” power a’f of the generator, |k| > m, without being themselves
a power of a;. We have then clearly V;,yLyV,, if y € AN M is supported on reduced words of
length at most m.

In the case of the radial MASA in L(F), Vi, is defined in terms of the Radulescu basis as
the subspace generated by the elements z; ;, x € W, 7, j > m. We adopt the same definition
in the quantum case, using our analogue of the Radulescu basis, and we show in Section 4 that
the orthogonality property V,,yLyV,, holds in an approximate sense as m — oo. Note that we
use one of the two main technical tools from [FV16], in an improved version (Lemma 1.6).

In the case of the classical generator MASA, the step (3) follows by observing that if z € M
almost commutes to the powers a’f of the generator, then its components supported on a subset
S C Fy and on the subset alfSafk have approximately the same norm. If § = 5, is the set
of words starting with a power at most m (in absolute value) of aj, for many values of k the
subsets a’meal_k will be pairwise disjoint, so that the norms of the corresponding components
of z will be small. One can then show that z is “almost” contained in V,,,, in a quantitative way.

In our case, we similarly relate various components of z using the commutator [x1, 2], see
Proposition 5.5 in Section 5. This requires to determine the structure constants for the left and
right action of x1 on the basis (z; ;) for a given 2 € W. Then the components of z that we are
able to relate in this way are not as simply “localized” as in the classical cases, and moreover the
coefficients in these relations are only recursively specified and require a quite delicate analysis
to reach the conclusion. For all this it is naturally necessary to know that the families (x; ;) are
Riesz bases, uniformly with respect to z € W.

Assembling the results obtained in Sections 4 and 5 it is then easy to prove Theorem A.

1. PRELIMINARIES

We denote by N the set of non-negative integers. Unless otherwise stated, all indices used in
the statements belong to N.

In this article, a discrete quantum group is given by a Woronowicz C*-algebra C*( )
[Wor98], i.e. a unital C*-algebra equipped with a unital *-homomorphism A : C*( ) — C*( )®
C*( ) satisfying the following two axioms: i) (A ® id)A = (id ® A)A (co-associativity); ii)
AC*( )1 C*( )) and A(C*( ))(C*( ) ® 1) span dense subspaces of C*( ) @ C*( ) (bi-
cancellation). This encompasses classical discrete groups, as well as duals of classical compacts
groups G, given by C*( ) = C(G).

In this setting, the existence and uniqueness of a bi-invariant state h € C*( )*, i.e. satisfying
the relations (h ® id)A = 1h = (id ® h)A, were proved by Woronowicz [Wor98] when C*( )
is separable, and by Van Daele [VD95] in general. We can consider the GNS representation
A associated with A and we shall mainly work with the corresponding von Neumann algebra
M = L£( ) = MC*( ))" represented on the Hilbert space H = ¢2( ). We still denote h the
factorization of the invariant state to M. As the notation suggests, in the classical case L(I")
is the usual group von Neumann algebra with its canonical trace, whereas for the dual of a
compact group G we have £L( ) = L*°(G) with the Haar integral.

A corepresentation of is an element v € M ®B(H,,) such that u13u3 = (A®id)(u). We will
work exclusively with unitary and finite-dimensional corepresentations. We denote Hom(u, v) C
B(H,, H,) the space of intertwiners from u to v, i.e. maps T such that (1@ T)u=v(1®T). A
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corepresentation w is irreducible if Hom(u,u) = Cid; two corepresentations u, v are equivalent
if Hom(u,v) contains a bijection. The tensor product of w and v is u ® v = wjav13, with
H,sv = H, ® H,. We have defined in this way a tensor C*-category denoted Corep( ) with a
fiber functor to Hilbert spaces.

Let u € M ® B(H,) be a corepresentation of . For (, { € H, we can consider the cor-
responding coeflicient u¢ ¢ = (id ® (*)u(id ® §) = (id ® Tr)(u(l ® £¢*)) € M. More generally
for X € B(H,) we denote u(X) = (id ® Tr)(u(l ® X)) — although it would perhaps be more
natural to denote this element u(y) where ¢ = Tr(- X) € B(H,)*.

In the present article we will work only with unimodular discrete quantum groups, equiva-
lently, the canonical state h will be a trace. In this case the Peter-Weyl-Woronowicz orthogo-
nality relations read, for u irreducible:

(1.1) (w(X) | u(Y)) = (dimu) (X | Y),

where we use on the left the scalar product associated with h, (z | y) = h(z*y), and on the
right the Hilbert-Schmidt scalar product (X | Y) = Tr(X*Y). On the other hand we have
(u(X) |v(Y)) =0 if u, v are irreducible and not equivalent.

The product in M can be computed according to the evident formula u(X)v(Y) = (u® v)
(X ®Y). We have moreover w(T'X) = v(XT) for X € B(H,, H,) and T € Hom(v,u). As a
result, if we choose intertwiners 7; € Hom(w;,u ® v) such that T;T; = id and ), T;T; = id,
we obtain the formula u(X)v(Y) = >, wi(T;(X ® Y)T;), which we can use to compute the
product of coefficients of irreducible corepresentations as a linear combination of coefficients of
irreducible corepresentations.

In this article we consider the orthogonal free quantum groups = FOp defined in the
Introduction, and assume N > 3. Associated to NN is the parameter ¢ € ]0, 1[ such that g+¢ ! =
N, which plays an important role in the computations. We have ¢ — 0 as N — oo. Banica
[Ban96] showed that the C*-tensor category Corep(FOy) is equivalent, as an abstract tensor
category, to the Temperley-Lieb category T'Lgs at parameter 6 = N, and that FOp is realized via
Tannaka-Krein duality by the fiber functor F': T'Ly — Hilb which sends the generating object
to Hy := CV, with corepresentation u = (u;;);; given by the canonical generators of L(FOy),
and the generating morphism to F'(N) =t := ), e; ® e; € Hy ® Hy, where (e;); is the canonical
basis of CV. See [NT13, Section 2.5] for details about this category.

This means that we have a pictorial representation of elements A € Hom(HP*, HP'). More
precisely, denote NCy(k,l) the set of non-crossing pair partitions of k 4 [ points. For each
partition m € NCq(k,l) there is a morphism 7, € Hom(H ?k ,H1®l) whose matrix coeflicients
(€i, ® - ®e; | Tr(ej, ® -+ ®ej,)) are equal to 1 if “the indices s, j; agree in each block of
7”7, and to 0 otherwise. Then, for N > 3 the maps T with 7 € NCy(k,l) form a linear basis
of Hom(H 1®k, H 1®l). Elements m € NCo(k,1), and the corresponding morphisms T, are usually
depicted inside a rectangle with k& numbered points on the upper edge and [ numbered points
on the bottom edge by drawing non-crossing strings joining the two elements in each block of 7.

More generally, the collection of spaces B(H{@k ,Hl®l) is an (even) planar algebra, meaning
that linear maps obtained by composing and tensoring given maps X; € B (H1®ki, Hl®li) with
maps 1 can be represented by means of a rectangular Temperley-Lieb diagram as above with
p internal boxes representing the maps X;. For instance, if X, Y € B(H 1®2) we have, drawing
dashed internal and external boxes, and solid Temperley-Lieb strings:

,,,,,,,,,,,,,

The irreducible objects of the Temperley-Lieb category, and hence the irreducible corepre-
sentations of FOpy, can be labeled by integers k¥ € N up to equivalence, in such a way that
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ug = 1 ® id¢ is the trivial corepresentation, u; = w is the generating object, and the following
fusion rules are satisfied:

U @ Up = Upg—p| D Up—p|42 D -+ D Uk

We denote H; the Hilbert space associated with u; and dp = dim Hi. We write Try, trg
the standard and normalized traces on B(H}y). Note that dg = 1 and d; = N. The remaining
dimensions can be computed using the fusion rules and are given by g-numbers:

Rl _ o= (kt1)
q—q!
The irreducible characters are x; = (id ® Trg)(ug) € M. It follows from the fusion rules and

the Peter-Weyl-Woronowicz formula that they form an orthonormal basis of the x-subalgebra A
generated by x1 = > u;;, which is weakly-* dense in A = x/.

(1.2) de = [k +1],:= 1

According to the fusion rules, uj appears with multiplicity 1 as a subobject of u?k. We agree
to take for Hj the corresponding subspace of H 1®k , and we denote P, € B(H 1®k) the orthogonal
projection onto Hy: this is the kth Jones-Wenzl projection. We have Py(P, ® Fy) = Py, i.e. Hy
is a subspace of H, ® Hp, as soon as k = a + b. We shall use the notation idy for the identity
map both on Hi or on H1®k ; the space it is acting on should be clear from the context. We
will also use the embeddings Hy C H, ® Hy C H{g)k, when a + b = k, to identify an element
X € B(Hy) with the corresponding elements of B(H, ® Hp) and B(HP*). This is especially
used to take partial traces of X such as (Tr, ®id)(X) or (Tr; ®id)(X), where Try always stands
for the trace of B(Hy) as indicated above.

As another consequence of the fusion rules, there is a unique line of fixed vectors in Hy ® Hj,.
We already know the generator ¢ = t; of Hom(Hy, H; ® H;). This map satisfies the conjugate
equations (id; ® t*)(t ® idy) = id; = (* ®idy)(id; ® t). We slightly abuse notation by defining
recursively t} = t1, t§ = (id®* '@t @id®* 1)tk € Hom(Hy, HP?*), so that Hom(Hy, Hy® Hy,)
is generated by tp := (P, ® Pt} = (idy ® Pt} = (P, ® idg)t}. Note that we have then
5 (X @idg)tg = Trg(X) for X € B(Hy), in particular ||t = /dj.

Using the intertwiner ¢ one can also investigate more precisely the position of H,, in H,,_1® H1,
and this gives rise for instance to the Wenzl recursion relation [Wen87, Prop. 1], see also [FK97,
Equation (3.8)] and [VV07, Notation 7.7]:

n—l dl—l
dnfl

(id?(H) ®t®id?" Vg t*) (P ®idy).

n—1
(13)  Py= (P ®id) +» (-1)
=1

One can go further and define the basic intertwiner vkl = (Pr ® P)(idg—q ® tq @ idj—q) Py
which spans Hom(H,,, Hy ® H;), where m = k + [ — 2a. It is not isometric but its norm can
be computed explicitly, see [Ver07, Lemma 4.8]. Following [FV16], we denote rpi = ||[Vir!||=L.
This yields the following explicit formula to compute the product of coefficients of irreducible
corepresentations:

min(k,l) 9
(1.4) u(X)u(V) = 3 (55 wn (VEH(X @ VIV,
a=0
where we still agree to write m = k + | — 2a. This motivates the following notation (which is
indeed connected with the convolution product in ¢.(FOpy) up to constants).

Notation 1.1. For X € B(Hy), Y € B(H;), m = k + 1 — 2a we consider the following element
of B(Hy,):

X s Y = VA X @Y)VP = P(idi_e @t @ idi_o)(X @ V) (idp—q @ tq @ idj_g) Pr.

One can perform analysis in the tensor category Corep(IFOp). Recall for instance Lemma 1.3
from [VVO07] below, with some more precise information about constants.

Lemma 1.2. For any k € N we have ¢ % < dp < ¢7%/(1 — ¢?).



6 ROLAND VERGNIOUX AND XUMIN WANG

Proof. Clear from (1.2). O
Lemma 1.3. Fiz gy € |0,1] and assume that ¢ € 10,qo0]. Then there exists a constant C
depending only on qo such that ||(Pyyp ® id.)(idq ® Pyye) — Parprell < C¢ for all a, b, c € N.

Proof. This is [VV07, Lemma A.4], we only have to check that the constant C' remains bounded
as ¢ — 0. The proof of [VV07] explicitly gives the following upper bound:

I(Pats ©02)ida @ Prr) — Pososell < o (T[01+ D)) (Z o)
0

where C' and D a priori depend on ¢. Let us show that one can choose C and D uniformly over
10, go]. Using Lemma 1.2 we have

—b—c [2]q[a]q < q—b—c q—lq—a—l—l < 1 )
[a+b+c+1] ¢ (1—¢?)* T (1 - ¢3)?
Similarly:
—b—c| [2]qla+blq _ [2]4[b]q — gt [2]qlalglc + 1]q
[a+b+ct+1ly [b+c+1 [a+b+ct+1gfb+c+1]

-1,—a+1,,— b
< g g g g a 1

< .
- el =¢?)P T (1-¢§)? T (1—g5)?
In [VVO07], the only constraint on C' is to be an upper bound for these two quantities, hence it

can indeed be chosen to depend only on ¢p. On the other hand, D should be an upper bound
for

—cC [2]q[b]q < q—c qilqib+1 < 1
bt+ec+1g =" qe(1—-¢*) = (1-q3)?
hence it can also be chosen to depend only on gg. Il

We also have estimates on the constants r, already proved in [Ver07]. The formulae for P

show that, again, the constant C' is uniform for ¢ varying in an interval |0, go] with ¢p < 1, but
we will not need this fact.

Lemma 1.4. There exists a constant C, depending only on q, such that we have 1 < \/damﬁ{l <C
forallk, l and m =k +1— 2a.

Proof. See the proof of [Ver07, Lemma 4.8], [BVY21, p. 1583], [BC18, Equation (6) and Propo-
sition 3.1]. O

The following estimate appeared also in connection with Property RD [Ver(07]. Recall that || - ||2
denotes the Hilbert-Schmidt norm on matrix spaces.

Lemma 1.5. Consider integers such that m = k + 1 — 2a. Then for any X € B(H1®k),
Y € B(HPY) we have ||(idp_q ® 5 @ idi_o)(X @ V) (idg_q @ ta ® idj_o)|l2 < | X||2]|Y ]2 and
1(id ® Tra) (X) 2 < Vda|| X |2

Proof. The proof of [Ver07, Theorem 4.9] applies, although it was there used only for X € B(Hj),
Y € B(H;). Let us repeat it. Consider an orthonormal basis (f;); of H,, then the basis (f;);

defined by putting t, = >, fi ® fi is orthonormal as well: indeed its Gram matrix is Woronowicz
modular matrix Fg, which is equal to the identity in our unimodular case. Put Ey = f;f; and

Er= ﬁfj* € B(H,) for I = (1,7), these are orthonormal bases of B(H,) for the Hilbert-Schmidt
structure and we have t} (E; @ Ej)t, = d1,7. Decompose (idg_q®@ Py) X (1dg—q®@ Py) = > X1 ® Ef
with X; € B(HZ**) and similarly (P, ® id;_)Y (P, ® id;_,) = Y. E; ® Y;. We have then
S IX 3 = iy o © Pa) X (idy_q @ Po)3 < X3 and similarly 3 [V;]3 < V3. Finally we
have by the triangle inequality and Cauchy-Schwarz :

I(d® t; ®id)(X @ YV)(id @ t, @id)[5 = |32, sta(Er @ Ej)ta x (X1 @ Y7)|3
2
< (X 1IX1ll21Y7]l2)
< X3 Y3 < I1X131Y)3
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The second inequality of this lemma follows by taking [ = a and Y = id,, but can also
be proved more directly by noticing that in the canonical isometric isomorphism B(K ® L) ~
K®L®L®K, the partial trace id®Try, corresponds to the map id®t; ®id, where tf, : C — L®L
is the canonical duality vector whose norm is v/dim L. O

We will use again one of the two main estimates from [FV16] about Corep(FOy). For a, b,
¢ € N consider I, . = (idq ® try ®ide)(Paypre) € B(Hg ® He) — this time the analysis deals
with Corep(FOp) together with its canonical fiber functor. Proposition 3.2 of [FV16] shows
that IL,p . is almost scalar as b — oco. We give below an improvement of the corresponding
constants.

Lemma 1.6. For every qo € |0, 1] there exist constants C > 0, a € |0, 1 such that, for all a, b,
¢ € N and q €10, qo] we have T, — A(id, ® id.)|| < Cqle®] for some scalar A € C.

Proof. Let us note first that in the case ¢ = 0 the map dpllyp . = (idq @ t}) (Pagp ®1dp) (idq @ )
is an intertwiner of the irreducible space H,, hence it is a multiple of the identity. On the
other hand, for ¢ > 1 Proposition 3.2 of [F'V16] uses the scalar A = X, . explicitly given by

Aae = q7¢/dqdc. Consider 1T}, | . = dpllapc — dpa,c(ide ® idc). A direct computation shows
that
pod @ —qote
TI'( ;,b,c) = da+b+c - q_a_cdb =q + 1_7(]2
1 d
< 1V = Y i, 0100

Now, [FV16] shows the existence of constants D, . such that ]Tr(H;7b7cf)\ < Dgo(Tr f*f)Y? for
f € B(H,) ® B(H.) with Tr(f) = 0. This implies

| Tr(I o )| < (dave/ (1= %)° + D3 ) 2(Tx f* )12

for any f € B(Ha) ® B(Hc)? hence HHa,b7c - )\a,cidH2 S (da-l—c/(l - q2)2 + DZ7C)1/2db_1' Here we
use the Hilbert-Schmidt norm in B(H, ® H.), which is bigger than the operator norm.

Moreover, it is explicitly stated in the proof of [FV16, Prop. 3.2] that one can take the
constants D, . defined by induction over c as follows: D, o = 0 and, for ¢ > 1:

Dy e = Kemax(dy* Dy e 1+ dy/*dy1,d,/7%),
where 1 < K. = 1/(1 — ¢°) < K := 1/(1 — q). In particular doy. < D?_ if ¢ > 1. Putting

a,c
C1 = v2/(1—g?) we have thus, for all a, b, ¢ € N, the existence of A € C such that ||TI, , .—Aid|| <
C1Dacq-

One can then show by induction that the constants D, . satisfy the estimate Dy . < (2NK )¢,
where N =d; = ¢+ ¢~ !. Indeed chtllfc < KN©@+9/2 < (2K N)**¢, and for ¢ € N* we have by

induction
Ko(dy*Dgey + d%d,_) < KNV2(@QNEK)*te! 4 KN3/2N1 < 2NEK)ote,

Of course this estimate is quite bad, but one can improve it using [VVO07, Lemma A.4].
More precisely, let a > 0 be such that (2K N)?*q = ¢*. Take a, ¢ > ab. Denote Cy the
constant given by Lemma 1.3. Then we have

Poipre = (Pa ®idp @ Pe)(idg—|ab) @ Por2jab) ® ide_|ab))

up to 2Chql®®) in operator norm. Applying id ® trp ®id, which is contracting, to this estimate
we obtain

Mope = (Po® Pe)(ida—|ap) @ Il jab) p,[ab) @ 1de[ap)) = A(ide ® idc)
up to 2Cqle?] +C1D|ap),|ab] ¢ < 2CHglet +C1(2]\7K)2LabJ ¢® in operator norm, for some \ € C.
Since ¢ < 1 < 2NK we have moreover (2N K )2leblgb < (2N K)20bgb = ¢ob < glod) by definition
of .. This yields [Ty — A(id, ®id.)|| < (2Co +Cy)qle®). This estimate is also valid if a, ¢ < ab
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because in this case qub < (2KN)29bgb = g2 Tt holds also in the remaining cases by using
Lemma 1.3 only on one side.

Finally we have shown the existence of Dy > 0, depending only on gp, and a > 0 such that
for all a, b, ¢ there exists a constant A such that [T, . — A(id, ® id.)|| < Dogl®®). One should
be careful that oo depends on ¢. In fact it can be computed explicitly from the defining relation
(2KN)?*q = ¢, with K = 1/(1 — q) and N = g+ ¢~ ': one gets

1 2In2 2 1+¢2\1!
a=—-1[1- — In .
3 3lng 3lng 1—gq
From this it follows that « is decreasing from 1/3 to 0 as ¢ varies from 0 to 1, and the result
follows. O

Remark 1.7. For instance one can take v = 1/4 for ¢ ~ 0.15 (or Ny = 7). We also have
q® ~ Lq'/3 as ¢ — 0, where L = exp(21n(2)/9).

We will need in the next section one last tool about the representation category of FOp. The
Wenzl recursion relation (1.3), applied twice, yields the following bilateral version.

Lemma 1.8. For n > 4 we have the bilateral Wenzl recursion relation:

P, = (id; ® P,—2 ®id;)+

dn72
d

n—1
dn—2

(id; ® Pp_y ®idy)(#t* @ id?™ ) (id; ® Pp_y ®idy)

-2 (id; ® Po_s ®id1)(id7" 2 @ %) (id; ® Po_sy ®idy)
n—1

(-t . 1 @(n—2) _ ey .

+ T(ldl ® Pp—o ®idy)(t ®idy ® t*)(id; ® Pp—o ®idy)
n—1

_J-n_l n— . .
+ y(idl ® Ph_o ® idl)(t* & id?( 2) ®t)(id; ® P2 ® ldl)
n—1
dy + dp—3dp—2

dnfldnf2
For n =3 the formula still holds, without the last term.

(n—4)

(ldl QR P,_o® idl)(tt* ® 1(31(18 ® tt*)(idl QR P,_o® ldl)

Proof. We assume for this proof that n > 4. A similar calculation gives the result for n = 3.
We first multiply the relation (1.3) on the left by (id; ® P,—2 ®idy). All terms except [ = 1
and [ =n — 1 vanish because they involve P,_»(id; ® t ® id;), and we are left with :

(-1

(i ® Pop @idy)(t ® id®" @ ) (P_y ® idy)

P, = (P ®idy) +

dn72
dnfl

(idy ® Py @idy)(1d" 2 @ %) (Pa_y ® idy).

Let us denote A, B, C the three terms on the right-hand side above, without the numeric
coeflicients. We apply the left version Wenzl’s recursion to the projections P,_1:

n—2

dp_ n—k— . - )

Pocy = (i1 ® Poo) + 3 ()" (01! P @1 0id! ) (dy @ P)
k=1 n-

Multiplying on the left by (id; ® P,_2) this yields

o3 . e @(n—2) .
A= (id ® Pya @idy) - 3 (idy ® Po_y @ idy)(tt* @ 1dY ") (idy ® Py @ idy).

n—2
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We proceed similarly with B: only the terms & = 1, £ = 2 have a non-vanishing contribution
and we obtain, applying the conjugate equation:
B = (id; ® Py_y ®id1)(t @ id7" ™ @ t*)(idy ® Pp_sy ® idy)
="
dn—2
—1)"d; : .
+ ()71(1d1 ® P2 @idy) (tt" ® 1d?
dnf2
Finally for C only the terms k = 1, k = n — 2 survive, yielding:

C = (id; ® Pp_s ®id1)(id?" 2 @ t£*)(id; ® Pp_s ®id1)
(=n"

+

(idy ® Po_s ®idy)(#t* @ id?" ) (id; ® Pp_y ®idy)

"1 & 1) (id; ® Pa_s idy).

+ p (1d1 QR Ph_o® idl)(t* ® ld?(n_m ® t)(idl R P, ® ldl)
n—2
dp— _
- 3(idy ® Py @ idy)(#t* @ id?" ™ @ #4%) (idy ® Pu_s ® idy).
n—2
The result follows by gathering A, B and C' with their coefficients and using the relation
dp_s3dp_14+1= d721—2' O

2. DECOMPOSITION OF THE BIMODULE

In this section we consider the GNS space H = ¢2( ) of M = L£( ) with respect to the Haar
trace h. We identify M with a dense subspace of H. We shall study H as an A,A-bimodule for
A = x{ N M. We will more specifically consider the orthogonal H® C H of the trivial bimodule
A C H, and we shall decompose it into simpler, pairwise orthogonal submodules generated
by natural elements, see Proposition 2.12. Moreover we will exhibit for each of these cyclic
submodules Azx.A a linear basis (x; ;)i , see Proposition 2.9 and Corollary 2.14. Recall that A
is the unital canonical dense sub-x-algebra of A generated by x1.

We denote p,, € B(H) the orthogonal projection onto the subspace py H = uy(B(H})) spanned
by coefficients of ug. Note that pi belongs in fact to the dual algebra ¢>°( ), and that the
projection P € B(Hf@k) introduced in the preceding section is the image of p; under the
natural representation of /*°( ) on the corepresentation space H ?k.

The space H® is spanned by its subspaces pp H° and we have py H° = H°NppH = ui(B(H))
where B(Hy)° = {X € B(Hy) | Tr(X) = 0}. In the case of the classical generator MASA
al C L(Fn), the subspace analogous to pyH® is spanned by reduced words of length k, different
from a{ck. We introduce below a subspace H°° C H° which is the quantum replacement for the
set of words g € Fy that do not start nor end with a;.

Notation 2.1. For n > 1 we denote
B(H,)** ={X € B(Hy,) | (Tr; ®id)(X) =0 = (id ® Tr1)(X)}.
We denote H°° the closed linear span of the subspaces u,(B(H)®°) in H°.

Remark 2.2. It is well-known that H, C H{" is the subspace of vectors ( € H{" such that
(id;@t* ®id,,—i—2)(¢) = 0, for all i = 0,...,n—2. This follows by induction from the fact that H,
is the kernel of t* ®id,_o : H1 ® H,—1 — H,_s, according to the fusion rules. As a consequence,
an element X € B(H1®") arises from an element of B(H,,) iff we have (id; ® t* ® id,,—;—2)X =0
and X (id; ® t ® id,,—;—2) = 0 for all . Graphically this means we have X € B(H,,) iff we obtain
0 by applying to X any planar tangle which connects two consecutive points on the lower or
upper edge of the internal box corresponding to X:

it X

Since (Tr; ®id)(X) € B(HP™ 1) (resp (id®Tr1)(X)) is obtained from X by applying the planar
tangle connecting the upper left and lower left (resp. upper right and lower right) points of the
internal box, we conclude that X € B(H{") belongs to B(H,)°° iff we obtain 0 by applying to
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X any planar tangle which connects any two consecutive points of the internal box corresponding
to X. Diagrammatically this is represented by the additional constraints:

Now we compute the dimension of B(H,,)°, see Proposition 2.5. This will be useful to prove
that the families (z;;);; are linearly independent at Corollary 2.14. The latter also follows
from the stronger results of Section 3, but there we will have to assume that N is large enough
and the proofs are much more involved. Note however that the proof below is not optimal
either, in the sense that the underlying technical result established at Lemma 2.4 does not hold
if ¢+ ¢~ € ]2,2.41[, which can occur for the non unimodular groups FOg. We believe that
Lemma 2.3 and Proposition 2.5 hold true for any group FOg with ¢ + g~ ! > 2, ie. excluding
the duals of SU(2) and SU_;(2).

In the statement below we use the leg numbering notation: ¢, = >, e; ®id; ®--- ®@id; @€,
for n > 2. This application maps H, to H,_s, as can be seen when n > 4 by checking the
condition (id; ® t* ® idp—i—4)t] ,(¢) = 0, for any ¢ € Hp.

Lemma 2.3. Assume N > 3. For n > 3 the map ff,n : H, — Hy,_o 1s surjective.

Proof. We apply t7 ,, - t1n to the bilateral Wenzl recursion formula from Lemma 1.8. Using the

conjugate equations we have in B(H 1® (n—2)):
( ® d® ))tl = d®(n 2) _ t ( d?(n—Z) ® )1,
ﬁna®u@” D@ty = C 2,
At @id? " @y, = 02,
@I @tV =t oty (0> 4),

where C,_2 : @ (— (®E&for £ € Hy, ( € H?(n%). Thus for n > 4 we obtain

HaPatin = (d = 322 ) Poot
1 n—1
+“£1}zxﬁ +C 2Py o+
o

dv + dp—3dp—2

P, oty p_ot] P, _o.
dn—ldn—2 n—2t1n—-2 1n—24tn 2

This formula also holds for n = 3, without the last term. Observe moreover that || P,_2CE2, P, ||
<1 and ||Pn_2t17n_2t’1"n72Pn_2H < dy by composition. Now, the inequality established in the
next Lemma shows that ¢, Pyt1n, > €P,—2 for some € > 0. As a result 7, Pyt1n € B(H,_2) is
invertible and the result follows. U

Lemma 2.4. Still assuming N > 3, we have for any n > 3:
2dy,— 2 dy + dp—_3dp—
dy — 2= +d11+n3n2.
dn—l dn—l dn—ldn—Q

Proof. Denote e,, = d,,_1 — dn_2, fn = dn_5 + 1+ di, with the convention dy = 0 if kK < 0. For
n =3 we have e3 = N2 — N — 1, f3:1+NandsinceN23>1+ﬁwehave63>f3.
On the other hand we have, using the identity Nd,,—1 = d,, + d,,_o valid for n € Z*:

€n+l — €n = dn - 2dn—1 + dn—2 = (N - Q)dn—l > dn—l > dn—4 - dn—5 = fn-‘,—l - fn-

An easy induction then shows that we have e, > f,, for every n > 3.
Multiplying this inequality by d; we find

didy_1 — didy_o > didy_5 + dy + d3
— dydp 1 — (dy — 1)dp_o > didy_5+dp_o+dy + d?
- dldn 1_2dn 2 >d1dn 3+2+d /dn 2,
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using the facts dy > 3, didp—5 +dp—2 > dp—4 +dn—2 > didp—3—1, and d,,—2 > 1. Note that the
inequality did,_5 > d,,—4, resulting from the fusion rules, does not hold for n = 4, but one can
check directly that in this case did,_5 + dp—2 = d1d,—3 — 1.

Proposition 2.5. Still assume N > 3. For n > 2 we have dim B(H,)*° = dimp,H®*® =
dop, — dop—2. Forn =1 we have dim B(H;)°° = dim p1 H°° = da.

Proof. Recall the identification B(H,) ~ H, ® H, via X — x = (X ®id)t,,. In this identification
the condition (id ® Tr1)(X) = 0 reads (id,—1 ® t* ® id,,—1)(z) = 0 and the corresponding kernel
is Ho,, C H, ® H,. This holds as well if N = 2. Then the condition (Tr; ®id)(X) = 0 reads
t] 9, (@) = 0, so that the result follows from the rank theorem and Lemma 2.3. For n = 1 both
conditions coincide and we have B(H;)°° = B(H1)° ~ Hs. O

On the other hand in the case N = 2 one can check that {7 ,, vanishes on Hy, for all n, and
thus dim B(H,)°° = dim p,, H°° = dy,, for all n > 1.

Recall then the “rotation operators” p : B(Hj) — B(Hj) already considered in [FV16] and
defined as follows: p(X) = (P, ® t*)(id; ® X ®1id;)(t ® Py). It follows from [FV16, Lemma 3.1]
that p stabilizes the subspace B(Hy,)° and contracts the Hilbert-Schmidt norm. On B(H,,)° it
behaves even better: as the next lemma shows, it is a finite order unitary — in particular, it is
diagonalizable.

Lemma 2.6. The map p is a bijection from B(H,)°° to itself. Moreover we have p** =id and
p* = p~t on B(H,)°.
Proof. We first note that for X € B(H,)°° the element Y = (id; ® id,,—1 ® t*)(id; ® X ®idy)(t®
id,—1 ®idy) of B(H,—1 ® Hy, H] ® H,_1) is directly equal to p(X). This is clear if n = 1 since
then id; ® id,,—; = id; = P;. Assume n > 2. Since t*(id ® A)t = Tr1(A) for any A € B(H;) we
have (t* ® id,,—2)Y = (id ® t*)[(Tr; ®id)(X) ®id;)] = 0, and similarly Y (id,,—2 ® t) = 0, so that
using Remark 2.2 we have Y = P, Y P, = p(X). Then we compute (Tr; ®id)(Y") using again the
morphism ¢. Thank to the conjugate equation we have
(TI'1 ®1d) (Y) = (t* ® idnfl)(idl ®id; ®id,—1 ® t*)(idl ®id1 ® X ® ldl)
(idl RtRidy—1 ® idl)(t ®idy—2 ® ldl)
= (idnfl & t*)(X X® idl)(t ®idy,—9 ® idl) =0,
since X € B(H,,). Similarly (id ® Tr1)(Y) = 0 and this proves p(B(H,)°°) C B(H,)°°. The
conjugate equation also implies that (t*®id,)(id; ® Y ®id;)(id,, ®t) = X so that p is a bijection
with p~1(X) = (* ® P,)(id; ® X ®id;)(P, ®t). This holds as well for n = 1.

Let us check that p~! is the adjoint of p with respect to the Hilbert-Schmidt scalar product.

Using twice the conjugate equation we have, for X, Y € B(H,,)*:

Tr, (p~HX)*Y) = (Tr; ® Tr,,_1)[(id, ® t*)(id; ® X* @ idy)(t ® id,,)Y]

= Tr,1[(t" ®idp—1 @ t7)(id) ® id; ® X* ®idy)

idl Rt idn)(idl ® Y)(t ® idnfl)]

idp—1 ® t*)(X* X idl)(idl X Y) (t X idnfl)]

idp,—1 ® t*)(X* &® 1d1)(1d1 Rid,—1 @t ® ldl)

idi Y id; ® id1)<t ®idp—1 ® t)]
= (Trn_l X Trl)[X*(idl ®id,—1 ® t*)<id1 RY ® idl)(t ®idp_1 ® ldl)]
= Tr, (X" p(Y)).

Recall the notation ¢} € Hom(C, H{" ® H{") from the Preliminaries and consider the associ-
ated antilinear map ;" : HY" — HP" given by j7(¢) = (¢* ®id,,)t}. If (e;); is the canonical basis
of Hy = CV we have j"(e;, ®- - -®e;,) = €;, @ - -®e;, so that 705" = id and j*(¢) = (id,®C*)t".
Using the fact that p(X) = (id; ®id,—1 @t*)(id; ® X ®id;)(t ®id,,—1 ®idy) for X € B(H,,)° we
have easily p"(X) = (id, ®t"*)(id,, ® X ®id)(t" ®id,,), which yields (¢ | p"(X)§) = ("¢ | X5"()
for all ¢, ¢ € H,. Applying this identity a second time we get p?*(X) = X. O

(
= Trn 1
= Trn 1
(
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We shall now analyze the submodule Az A when z belongs to H°°. In the analogy with the
generator MASA o C L(Fy) in a free group factor, the vectors z; ; below play the role of the

words alga] € Fy, where g € Fiy does not start nor end with a;.

Notation 2.7. For x € H and ¢, j € N we denote ; j = > Pitn+;(XiPn(z)x;). For X € B(H,)
we denote X; ; = Py (id; @ X ® idj)Pi+n+j € B(Hi+n+j)-

Remark 2.8. The sum in the definition of z;; indeed converges in H, since its terms are
pairwise orthogonal an satisfy the inequality ||xipn(z)X; ]| < |Ix:llllx;]|||pn(x)||. This yields a
map (z — x;;) which is linear and bounded from H to H. We will mostly use the notation z; ;
in the case when x belongs to one of the subspaces p, H.

Note also that we have by construction u,(X);; = wiyn4;(X;;) for X € B(H,). Indeed,
denote z = wu,(X) and recall that x; = u;(id;), x; = u;(id;). To compute the component
Pitn+j(Xxi®x;) one has to use an orthonormal basis of isometric intertwiners 7' : Hypq; —
H; ® H,, ® H;. But according to the fusion rules there is only one such intertwiner up to a phase,
and by construction of the spaces Hj, we can take for it the canonical inclusion of H;i,; into

H;® H,® H; C Hf}(”nﬂ), whose adjoint is given by P, ;.

Finally, we record the fact that X; ; is the orthogonal projection of id;® X ®id; € B(H 1® (
onto B(Hitn+j), with respect to the Hilbert-Schmidt scalar product — indeed for any Y, Z €
B(Hl®(z+n+])) we have Tr(Y " Piini; Z Piintj) = Tr((Pign+5Y Pignts)* 2).

Proposition 2.9. Fiz k € N*, X € B(Hy)°° an eigenvector of p and x = uy(X) € H*°. Then
we have Az A = Span{z;; | i,j € N}.

i+n+j))

Proof. Let us prove by induction over i + j = n — k that z; ; € Az A. Assume that z, , € Az A
if p+ g < i+ j and compute x1z; ;. We have p,_1(x12i;) = (Hl’n )2up—1(idy *p—1 X; ;) and

n—1
(2.1) idl *n—1 X@j = (t* & Pn_l)(idl & X@j)(f & Pn—l)
=P (t" ®idp—1)(id1 ® Pp)(idi+1 ® X ®1id;)(id1 ® Pp)(t ® idp—1)Pp—1.

Since the Jones-Wenzl projections P, are intertwiners, we can expand them into linear combi-
nations of Temperley-Lieb diagrams, so that id; *,—1 X; ; is a linear combination of maps of the
form P,_1T,(X)P,_1, where 7 is a Temperley-Lieb diagram with n — 1 upper and lower points

and an internal box with 2k points, and T : B(H®*) — B(H1®(n_1)) is the associated map.
Since we multiply on the left and on the right by P,—; and X = P, X Py belongs to B(Hy)°°,
the term associated with 7 vanishes as soon as a string of m connects two upper points, or two
lower points, or two internal points.

Now consider the string originating from the first top left external point in a diagram 7 such
that P, 1T (X)P,—1 # 0. If it is not connected to the internal box, it has to connect the top left
point to the first bottom left external point, otherwise some other string would have to connect
two upper or two lower external point, because of the non-crossing constraint. We can re-apply
this reasoning to the following top left external points, until we find an external point connected
to X, say with index p 4+ 1 on the top external edge. Moreover up to replacing X by its image
p'(X) under some iterated rotation we can assume that this external point is connected to the
first top left point of the internal box by a vertical edge. Thus our diagram has the following
form:

Pn—l

Pn—lTTr(X)Pn—l = pl(X)

Pnfl
By the same reasoning we see that the (p + 2)' external point on the top edge connects to
the second top left point of the internal box p'(X) by a vertical string (if k£ > 2). Indeed if it is
connected to another point of the internal box, there will be a string joining two internal points,
and if it is connected to a bottom external point, there will be either a string connecting two
upper external points, or a string connecting two internal points. Continuing like this, we see
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that the only possibility for a non-vanishing diagram is one composed entirely of vertical lines,
i.e. Py_1(id, ® p'(X) ®1idy) P—1, with I € Z and p+q =n — k — 1. Since X is an eigenvector of
p, this shows that p,_1(x12; ;) is a linear combination of vectors =, , with p + ¢ < i+ j, which
belong to AxzA by the induction hypothesis. Note that if i = j = 0 we have p,—1(x12:;) =0 ;
this can also be checked directly because (2.1) then equals (Tr; ®id)(X).

We have pyy1(x12ij) = Pnr1(X1XiTXj) = Tit1,; because ppyi1(x1y) = 0 if y € ppH with
k" < n. We have thus z;11; = x1%i; — Pn—1(x12i;) and it follows that z; 1 ; belongs to AzA.
One can proceed in the same way on the right to show that x; ;11 belongs to Axz.A. By induction
we have proved z; ; € AxA for all i, j. Moreover from the identities x12; j = ®it1,j+Pn—1(X1245),
TijX1 = Tij+1+DPn—1(xi;Xx1) and the fact that p,—1(x1i;), Pn—1(zi jx1) are linear combinations
of vectors z, 4 it also follows that Span{xz; ;} is stable under the left and right actions of A. [

Remark 2.10. Using the Jones-Wenzl recursion relations, one can prove more precisely that
Pn—1(xijx1) is a linear combination of x;_1 j, pil(:c)i,j_l and ;41 j—2, where we abusively write
pur(X)) := up(p(X)).

Notation 2.11. Choose for all £k > 1 a basis (X,), C B(Hy)®° of eigenvectors of p, normalized
in such a way that ||ug(X,)||2 = 1. Denote Wi, = (ug(X,)), its image in ppH°°. Put as well
W = Uy Wk, which is a linearly independent family consisting of unital vectors in H°°. For
x € W we denote H(x) = AzA, and for k € N*, H(k) = AW} A, using the left and right actions
of A. The previous lemma shows that the vectors x; ; span a dense subspace of H(x).

Proposition 2.12. The family W spans H® as a closed A,A-bimodule. Moreover, forx #y € W
we have H(x)LH (y).

Proof. Denote L,, = Span{X;; | X € Wy, k <n,i+ j+k =n} C B(H,)°, and let us show by
induction over n > 1 that L, = B(H,)°. For n = 1 we have by definition L; = SpanW; =
B(H;)°° = B(H1)°. Assume that L, = B(H,)° and take Y € Ly | N B(Hy,41)°. We want to
show that Y = 0. We consider first (Tr; ®id)(Y"). For any generator X ; of L,, we have

e (X7 (Tr @1d) (V) = (Tr1 @ Tr) (Paga (i @ X7;) Pyt Y) = Trps1 (Xfpp,Y) = 0,

by assumption on Y. Since L, = B(H,)°, this implies (Tr; ®id)(Y) = 0. Similarly, (id ®
Tr1)(Y) = 0. As a result, Y € B(Hp41)°°. But B(Hp41)°° C Lpt1, and Y LL, 41, so that
we have indeed proved Y = 0. Taking into account Proposition 2.9, this proves that p,H° C
Span AW A for every n and the first result follows.

For the second part of the statement, take x € Wy, y € W distinct, with k£ < [. The subspaces
H(z), resp. H(y) are spanned by vectors xJzx%, resp. xjyx;. We have

OEaxd | xXiyxd) = (@ | X Tyxd) = (2 | o OE T yx ).
p+r  q+s p+r, - q+s

But X} yxi" " € Span{y;;} and y;; € piyiy;H. Since k <1 this implies that pp(x] " yxi ) €
Cy and the result follows since x_Ly. O

Denote B C B(H®) the commutant of the left and right actions of A. Being the commutant
of an abelian algebra, it is a type I von Neumann algebra, which can be decomposed into type
I, algebras. The numbers n € N* U {oco} appearing in this way form the Pukénszky invariant of
the maximal abelian subalgebra A.

Corollary 2.13. The bimodule H® is isomorphic to L*>(A) ® £2(W) ® L?(A). In particular the
Pukdnszky invariant of A C M is {oo}.

Proof. Indeed the proof of in [FV16, Theorem 5.10] shows that the measure on [—2,2] x [-2, 2]
induced by a given ¢ € H° N A and the action of A ® A on H° is equivalent to the Lebesgue
measure — in fact it has a non-zero analytic density. As a result, the corresponding cyclic
bimodule H(¢) is isomorphic to the coarse bimodule L?(A) ® L?(A). This applies to ( = x € W.
Now, Proposition 2.12 shows that we have an isomorphism of A, A-bimodules

H° ~ P L*(A) @ L*(A) ~ L*(A) @ (W) ® L*(A).
zeW
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As a result (A® A) N B(H®) ~ ARB({*(W))®A and the value of the Pukénszky invariant
follows since W is infinite. ]

Corollary 2.14. For x € W the vectors x; j are linearly independent.

Proof. Since the subspaces p, H° are pairwise orthogonal, it suffices to consider a subfamily
(x;;) with ¢ + k 4+ j = n fixed. Note that #{z;; | i+ k+j =n} =n —k + 1. According to
Proposition 2.12 we have

pnH® = @ EB Span{z;; | i+ k+j =n},
k<n xeWj
so that dimp, H® < >} (n — k + 1)#Wj. We will prove that this estimate is an equality, so
that dim Span{z; ; | i + k+j=n} =n —k+1 for all x € W, k < n, which implies the linear
independence.
Recall from Proposition 2.5 that #W}, = dim B(H})®° = dog, —dog—2 for k > 2, and #W; = ds.
We have then

S (n—k+ D)#EW, =37 (n—k+ 1)dor — > p_o(n —k+ 1)dag_2
=3 k1 (n =k + 1)dog — Y321 (0 — k) day
=Y _,doy = d2 — 1 = dim B(H,,)° = dimp, H°.

The computation of the sum in the last line follows from the decomposition of u, ® u, given by
the fusion rules. O

Remark 2.15. As a result, the map ® : ¢.(N)@ H*° ®c.(N) = H®, 6; ®x ®J; — x;; is injective
with dense image. It is however not an isometry. We will see in the next section that, at least
for “large N7, it extends to an isomorphism from ¢?(N) ® H°° ® ¢?(N) to H°.

We end this section with one further property of elements of H°° which is established using
the action of planar tangles and will be used in Section 4.

Proposition 2.16. For any ¢ € H(k), ¢ € H(K') and y € p,H with n < |k — k'| we have
yC L If k > n we have y¢ € H°.

Proof. By bilinearity one can assume ¢ = z;; = witk+5(Xij), ¢ = 250 = w150 (X 50),
with X € B(Hy)®°, X' € B(Hs)®°. Denote also y = u,(Y) € M with Y € B(H,). Then the
product y( is a linear combination of elements w,, (Y *,, X;;) with m = n+1i+k + j — 2a.
Using the Peter-Weyl relations (1.1) it thus suffices to prove that Tr(X/, .,(Y #,, X; ;)) = 0, with
m=4i+k+j =i+k+7j—2a.

By definition, the element in the trace is computed by the following formula:

Pm(ldz’ & X' ® idj’)Pm(idnfa & tz X idi+j+k—a)(idn b2 f)i—i—k—&-j)
(Y ®id; ® X ®1d;)(idp ® Pigi4j)(idpn—a @ ta @ iditjtk—a)Prm-

Since Pp,, Piyk+j, tq are morphisms, this element is a linear combination of planar tangles on m
lower and upper points, with 3 inside boxes, applied to X, X', Y. Since Tr(Z) = t},(Z ®idy, )tm,
the scalar Tr(Xj, (Y #p, X;;)) is itself a linear combination of such planar tangles T', without
external points, applied to X, X', Y.

Fix one of these tangles and consider the strings starting at one of the 2k points on the
internal box corresponding to X. These strings can have their second ends on X, X' or Y. If
2k > 2k’ + 2n, the first possibility must happen at least once, i.e. there is a string connecting
two points of X. Since the strings are non crossing, this implies that there is even a string
connecting two consecutive points of the internal box corresponding to X. But then the value
of the tangle applied to X, X', Y is 0 since X € B(H}y)°: see Remark 2.2.

If & < k' —n we proceed in the same way by considering strings starting on the internal
box corresponding to X’. The last assertion of the statement amounts to considering the trace
Tr(Y *, X;;) which is again a linear combination of planar tangles without external points
applied to Y and X, and if k¥ > n the same argument as above applies. (I

1At
7]
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3. INVERTIBILITY OF THE GRAM MATRIX

In this section we fix k € N*, v = uy(X) € ppH® with X € B(H}j)° an eigenvector of
p with associated eigenvalue p, || = 1. Recall the notation x;; = pirrj(xiTX;), Xij =
Piipyi(id; ® X ® idj)Pigg4;. We know from the previous section that (z;;) spans a dense
subspace of the bimodule Az A. Our aim is now to show that it is a Riesz basis, i.e. it implements
an isomorphism between H(z) = Az A in H and £2(N x N). We will only achieve this for small
q, i.e. large N. We thus consider the associated Gram matrix, which is block diagonal since
pmH Lp, H for m # n. Let us formalize this as follows:

Notation 3.1. We fix £ € N* and a unital vector z = ux(X) € Wy C ppH°°. We denote
G = G(z) the Gram matrix of the family (x;;);; C H, and G,, = Gy(z) its diagonal block
corresponding to indices (i, j) such that z; ; € p,H, i.e. i + k+ j = n. Since k is fixed we drop
the second index j and denote z,; = z;j, Xp; = X; ;. For i, p € {0,...,n — k} we denote
accordingly

Ghriip = (@nsi | Tnyp) = d;z,l(Xn;i | Xnip)-

The second equality follows from the Peter-Weyl-Woronowicz orthogonality relations, using
the Hilbert-Schmidt scalar product in B(H,,). Let us record the following symmetry properties
of G:

Lemma 3.2. Foranyn=1+k+j=p+k+ q we have
Gsip(2) = Grip,i(2) = Griq,j (") = Gnyjq(S(2)).

Proof. As a Gram matrix, G,, is self-adjoint, which corresponds to the first equality. Define
maps J, U : H — H by J(x) = z*, U(x) = S(z) where S is the antipode. The maps are
surjective isometries because we are in the Kac case, and since u,, is orthogonal they stabilize
ppH and send x,, to itself. We have then

Grsip(®) = (Pn(Xi2X;) | Pn(XpTXq)) = (IPn(XpTXq) | TPn(XiTX;))
= (Pn(Xq®™Xp) | Pn(Xj7"Xi)) = Gryqj(x")
= (Upn(xizx;s) | UPn(XpTXq)) = (Pn(XjS(2)X:) | Pn(XqS(®)xp)) = Gnijq(S(x)). O

Our main aim is then to show the existence of a constant C' such that ||G,]|, |G, || < C for
all n. In fact we even want the constant C' to be uniform over k£ and x € W, so that the map
® from Remark 2.15 will indeed be an isomorphism.

We shall first show that the Gram matrix G = G(z) is bounded as an operator on £2(N x N).
We start with an easy estimate, which is not sufficient for this purpose but will be useful later. We
then prove an off-diagonal decay estimate for the coefficients of the Gram matrix, see Lemma 3.4,
using the improvement of the main estimate of [FV16] established at Lemma 1.6. These two
results easily imply the boundedness of G(z) on ¢2(N x N), which we record at Proposition 3.5.
Note however that the constant C' obtained in this way depends on k, so that one cannot deduce
the boundedness of the whole Gram matrix. This will be improved later.

Lemma 3.3. We have |zpill2 < (1 — q2)_3/2||:6||2, hence |Gripl < (1 — q2)_3Hx||%, for all n,
0<i,p<n-—k.

Proof. We have
1 X013 = Tr(Py(id; ® X* ®id;) Py (id; ® X @ id;) P,)
< Tr(Py(id; ® X*X ®1d;)P,) < Tr(P; @ X*X ® P)) = did;|| X |3,
hence ||z,,.]|3 < (did;dy/dy)||z||3. The result then follows from Lemma 1.2. O

Lemma 3.4. For every qo € ]0,1] there exists a € |0,1] and C' > 0 depending only on qo such
that |G p| < Cq@IP=1=F)=2=k||2|12 for all n, i, p such that |p —i| > k, as soon as q € ]0, qo).
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Proof. The reader will find after the proof a graphical “explanation” of the computations. Write
n=i+k+j=p+k+q Wehave (zn; | Tnyp) = Tr(X];Xpq)/dn. We first assume p —i > k
and put a = |(p — i — k)/2]. By Lemma 1.3 we have ||P, — (idjt44q ® Pj—qa)(Pp @ idg14)|| <
Dgp~(itk+a) < Dy where D > 0 is a constant depending only on go. This yields

(Tnsi | Tnyp) = dyy ! Trp [Po(id; ® X* ®id;) Py(idy @ X @ idg) Py
~ d ! Tr, [Po(id; © X* ®id, @ Pj_o)(Pp ®@ X @ idy) Py
(3.1) =d, (Triyr @ Tr, ® Trjg)[(id; ® X* ®@idy ® Pj_a) (P, ® X ®1d,)Py).

Since d,,! Tr,, (P, - P,) is a state, the error is bounded by Dgq?%||X||?. In the last expression,
the projection P, ® id; ® id, is absorbed in P,, and since j — a > k + ¢ the partial trace
(idj1r ® Tr, ®idj_q)(Py) appears. We know from Lemma 1.6 that this partial trace is equal to a
multiple X of the identity up to Ed,ql?® if ¢ €10, qo], for some 8 € ]0,1[ and E > 0 depending
only on qg. Applying the remaining traces and dividing by d,, the total error is controlled by

a a dz kdad'—a a
Dq||X|? + Eq" J+617JHXH2 < ¢PI(D+ E/(1-q)*)IXII3

n

< Oq PR | I

for C = [D+E/(1-4¢3)’]/(1~qo) and a = 3/2 — recall that || X3 = dk||z[3 < ¢*||z[5/(1—q).
But if we replace (id;1r ® Trq ®idj_q)(Pn) by A(Piyr ® Pj_q) in (3.1) we can see the trace
Tr((id; ® X*) P;41,) which vanishes (as well as Tr((idy ® X ®1dy) Pj_q), where ' = [(p—i—k)/2]).

This proves the result if p —i¢ > k. If ¢ —p > k we can proceed in the same way “on the other
side” and the result follows because then ¢ — j = |p —i| > k. O

We give below a graphical version of the above proof, for the convenience of the reader, in
the case p — i > k. Of course it is still necessary to carry out the quantitative bookkeeping of
approximations, as we did above. It is possible to draw similar graphical computations for many
lemmata in this section and the following ones.

o p, ] I [ ]
T T ‘ P, w
}LX’Z } } B P R
b 1 } X3 L Bima
Tr(ijXp,q) = S £ - ! ~ ‘r ,lﬁhlw‘ ‘rfj‘ J
} { } X} ARl bbbl it
R R N i T . [ Pn |
L P, [ N Y ( ***********
] L

|

|
—
|

|

|

|

r

|

1,
|

|
1
|
\4{
|

=0x0.

Proposition 3.5. Fiz g € |0,1] and assume that q¢ € ]0,qo]. There exists a constant C' > 0,
depending on k and qo, such that |G| < C||z|j3 for all n. In particular G(z) is bounded.

Proof. Take the constants «, C' provided by Lemma 3.4. Put | = k+ [(2 + k)/«a], so that
ak + 2+ k < al, and decompose G,, = Gy, + G, where Grsip = 0}i—p|<iGn;ip- From Lemma 3.4
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we have |Gp.ip| < Cq@P=i1=0|2||3 and it is then a standard fact that G is bounded. More
precisely for any A € £2(N) we have by Cauchy-Schwarz

zi,p/_\i)‘pén;i,p < (Zi,p|)\i‘2’Gvn§i7p|)1/2(2i,p’)\l7’2|én§i’P|)1/2

allp—il— 2¢°C||z|13
< Clally SN PE g0 < 202
This shows that |G| < 2¢5C||||3/(1 — &) for all n and g € ]0, go).
On the other hand by Lemma 3.3 we have |G »| < (1—¢3) 73| z||3 for all n, 4, p and it follows
easily |G| < (20 + 1)(1 — g5) ~*[|z3. m

Now we want to prove that G has a bounded inverse and obtain uniform estimates with
respect to k. This requires a finer analysis of the band matrices G, of the previous proof. We
first show that for m < n the diagonal blocks of size m — k + 1 of GG,, “resemble” G,,, with a
better approximation order for blocks that are far away from the “borders” of G,. This will
allow to reduce the analysis of G,, to that of a “fixed size” matrix Gy, (in fact m will depend on
k, but not on n).

Lemma 3.6. Fiz qo € ]0,1] and assume that q¢ € |0,qo]. Assume that n = m + a + b and
m=1i+k—+j=p+k+q. Then there exists a constant C' depending only on qo such that

Cllz|3 g >UD=%if a =0,
|Gmiip = Grsitaptal < { CHJ:Hé qmaX(i,P)—k: if b=0.

We also have |Gmip — Gritapral < Cllz||3 ¢™GIPD=F for o, b arbitrary.

Proof. By definition we have n = (i+a) +k+ (j+b) = (p+a)+ k+ (¢ +b). The case
b = 0 follows from the case a = 0 by symmetry. The “general case” follows from the first two
cases by going first from m to n’ = m + b and then from n’ to n = n’ + a, and observing that
Cqmax(7:0) 4 O gmax(ip) < 90 ¢min(hip.9)  So we assume a = 0.

According to Lemma 1.3 we have || P, — (idj+x ® Pj4p)(Pn ®@idy)|| < C¢?, which yields

(Tnsi | Tngp) = dyyt Trp [Po(id; @ X* @ id;j 1) Po(idp ® X @ idgyp) P
~ d,! Tr, [P (idi © X* © Pj13) (P @ idy) (idy © X @ idg) Py
= dp, ! (Try, @ Try) [P (idi © X* ©id;46) (P © idp) (i © X © idg4s)]

up to C¢/[| X ||* < C¢?dy||x||3, since Pj4yp is absorbed in P,. Since by [VVO07, Proposition 1.13]
we have (id ® Try)(P,) = (dyn/dm) P, this reads

(Tnsi | Tp) = dy)! Trp [P (id; © X* @ id;) Pp(idy ® X ®@1dy)] = (T | Tmj)

up to Cqldg||z||2 < C¢=*||z||3/(1 — qo). If j < q we proceed in the same way starting with the
estimate P, ~ (P, ® idy)(idp+x ® Pyyp) up to Cgl. |

In the next Theorem we show that the blocks G,, of the Gram matrix G are related by a
recursion formula, which allows at Lemma 3.9 to obtain estimates on G,, with a good behavior
as k — oo, improving the “naive” Lemma 3.3.

Theorem 3.7. Fizxn >k >0 and x = uip(X) € Wy with p(X) = uX. For0<i<n—k and
0 <p<n—k we have:

Griip = Op<n—k(1 — AY)Gn15ip + Op>0B) Gn—15ip—1 + 6p>1C) Gn—1,i p—2 where

A" — dp+kdp+k71 B" — 2(_1)k: Re(,u) derkfldp—l on — dpfldp*Q

P dndn—l ’ P dndn—l ’ P dndn—l ‘

Note that A} =1ifp=n—k, B) =0if p=0and C) =0if p=_0or 1, if one puts d_; =0
for [ > 0. Hence the corresponding terms vanish “naturally” from the recursion equation.

The proof of the theorem will easily follow from the following Lemma, that we will reuse in
Section 5, and which relies on two applications of Wenzl’s recursion relation (1.3).
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Lemma 3.8. For X € B(H)°°, k € N*, such that p(X) = pX, we have for all p, ¢ € N and
n=p+k+gq:
dn—l
dn,

Proof. Step 1. In this proof we denote T' = X, ;. We will use the Jones-Wenzl recursion formula
for each projection P, appearing in the definition 7" = P,(id, ® X ® id,)P,, starting with the
left occurrence. By the adjoint of (1.3) we have T = Y"1, (—1)""!(d;_1/d,—1)T} where

T, = (Pp—1 ®idy)(id, ® X ®idg) P, and

Ty = (Pr—1 ®idy)(idp—2 ® t)(idj—1 ® t* ® idj,—j—1)(idp ® X ®idy) Py for I < n.

(id ® Trl)(Xp,q) = 5q>0(1 - Ag)Xp,q—l + 5p>OB;Xp—1,q + 5p>IC;Xp—2,q+1-

Step 2. Denote M = T,,. Recall that (id ® Tr1)(P,) = (dn/dn—1)Pn—1, so that if ¢ > 1 we have
(id @ Tr1)(M) = (dp/dn—1)Xp,g—1- If ¢ = 0 we have to apply (1.3) to the second occurrence of
P,,. This yields M = Y7 (—=1)"! (d;_1/d,—1)M; where

M, = (Pn—l X idl)(idp X X)(Pn_l X idl) and

M; = (Pn,1 X® ldl)(ldp ® X)(idl_l RtR idn_l_l)(idn,Q ® t*)(Pn,1 &® ldl) for [ < n.
In (id ® Try)(M,,) we can factor (id ® Tr1)(X) = 0 so this term disappears. Moreover all terms
M, vanish because ¢ hits X = X P, or P,,_1, except M,,. By the conjugate equation we have

(id ® Tr)(Mp) = (idp—1 @ t*) (M, ® id1)(idp—1 ® t)
=P,_1(idp—1 ®t")(idp ® X ®1id;)(idp—1 ® t @ idy—p) Pr—1
and we recognize (id ® Tr1)(M,) = Pp—1(idp—1 ® p(X))P,—1. Altogether we can thus write
(id ® Trl)(M) = p<nfk<dn/dn—1)Xp,q—1 + (_1)k6p:nfk,u(dp—1/dn—l)Xp—1,0~

Step 3. Now we come back to the terms 1; with | < n. Most of them vanish because t*
hits either X = P, X or P,. The only remaining terms are M’ := T, 1), which appears only if
p<n-—k(ie. ¢ > 1), and M" := T,, which appears if p > 1. For these terms we apply as
well (1.3) to the second occurrence of P,. This yields M’ =Y} (=1)""!(d;_1/dp—1)M] where

M = (Py_1 ®idy)(idp_ ® ) (idpys_1 @ t* @ idy_1)(id, ® X @ idy)(P_1 ®id;) and
M| = (P,—1 ®id;)(idp—2 @ ) (idprs—1 ® t* @ idg_1)
(idp ® X ®1idy)(idj—1 ® t ® idy—j—1)(idp—2 @ t*)(Pp—1 ®id;) for I < n.
One can simplify (1d®@Tr1)(M)) = (idy—1 ®@t*)(M,, ®id1 ) (id,—1 @) using the conjugate equation:
(id ® Tr1) (M) = Py_1(idptr—1 ® t* ®idg) (idp ® X @ idgt1) (Pt ® ).

This vanishes if ¢ > 2 because in this case ¢ hits P,_1. If ¢ = 1 applying once again the
conjugate equation we recognize (id ® Try)(M},) = P,—1(id, ® X ®idg—1)Py—1. Finally we have
(id ® Tr1)(M;,) = Op—n—k—1Xp,q—1-

Again most of the terms M, l’ with [ < n vanish because the last ¢ hits either X = X P, or P,,_1.
The first non-vanishing term, if p > 1, is M, and we recognize (idy ®t*)(id; ® X ®id1)(t®idy,) =
p(X) = uX. By the conjugate equation we have (id ® Try)(L ® tt*) = L ® id; so that

(id ® Tr1)(M,) = p(id ® Try)[(Pp-1 ®idy) (id,—2 @ t)
(idp—1 ® X ®idg—1)(idp—2 @ t*)(Py—1 ® idy)]
= 1Py (idp_y ® X @idg) Py = i Xp_14.
The second non-vanishing term is M ;. but it contains the term (idy—1 ® ¢*)(X ®id1)

(idg—1 ®t) = (id ® Tr1)(X) hence it vanishes as well. Finally we have M
q > 2 and by the conjugate equation can also be written

MZ/J+]€+1 = (Pn,1 X ldl)(ldn,Q X t)(ldp RX® idqu)(idnfg ® t*)(Pn,1 X ldl)

As for M, we have the further simplification (id®@Tr1)(M,,, ;1) = Pr-1(id, ® X ®idg—1)Pp—1 =
Xpg-1-

441 Which appears if
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Step 4. We proceed similarly for M”, writing M" = > (—=1)""(d;—1/dy—1)M]" with
M) = (Ppo1 ®@id1)(idp—2 @ t)(idp—1 @ t* ® idgyq—1)(idp ® X ®idy)(Pn—1 ®id;) and
M = (Pp—1 ®@id1)(idp—2 @ t)(idp—1 @ t* ® idgyq—1)
(idp ® X ®idy)(idj—1 @ t ® idy—j—1)(idp—2 @ t*)(Pr—1 ®1id;) for I < n.
As in the case of M, we find
(id ® Tr1) (M) = Ppo1(idp—1 @ t* @ idgi) (idp @ X ® idgs1)(Poo1 ® 1),

which vanishes as soon as ¢ > 1 because ¢ then hits P,_1. If ¢ = 0 we recognize (id ® Tr;)
(M]))) = Pp—1(idp—1 ® p*(X))P,—1. Altogether we have (id ® Tr1)(M,)) = Op=n—rkiXp—1,q-

The first non-vanishing term M;" is M)/ ,, if p > 2, which by the conjugate equation reads
MI’)’_1 = (Pp—1 ®id1)(idy—2 ® t)(idp—2 ® X ®idy)(idp—2 @ t*)(Pyr—1 ®id;). As for M’ it follows
(id ® Trl)(MI’,’fl) = P,_1(idp—2 ® X ®idgy1)Pr—1 = Xp—2,4+1. The second non-vanishing term
would be M, but it contains (Tr; ®id)(X) hence in fact it vanishes. The last term to consider
is M;/z/+k which appears if ¢ =n — p — k > 0 and we recognize

Zl7l+k — (Pn—l ® 1d1)(1dn—2 ® t)(idp_l ® p*(X) ® idq_l)(idn—Q ® t*)(Pn—l ® ldl)
which yields as before (id ® Tr1)(M), ;) = iXp—1,4-

Step 5. Finally we can collect all terms as follows:

dyor_ dypor_1d,_
(id @ Try)(T) = (id @ Try) | M + (1) P %60 g EZLMY 4 (—1)F8, ooy 221 g

dn—1 dy_
d k— d k _ dp—
o 6p<n—k—1 P+ 21 p+ M],;+k+1 + (_1)n p6p21 D 1M7/L/
dnfl dnfl
dp—1dy_2 dp—1dpip—1
—Opa L= My g+ (=1) 6oy = My |

2 2
dnfl dnfl

According to the computations carried above we obtain:
dp_1(id ® Tr1)(T) = dp<n—idndn—1Xpg—1 + (= 1) 0pmp—ipidp1dp-1Xp-1,4
= Gpmn—t—1dpt—1dpi1Xp -1 + (1) 0npop>1pdypi—1dp1Xp-14
— Gpen—t—1dprh—1dpirXpg-1 + (—1)*0pmn_pfidp1dpir—1Xp-14
— Sp2dp1dp—2Xp-2g11 + (=1) 0 kop>1idp_1dpik-1Xp-14-
Merging cases together as appropriate this yields the expression in the statement. O

Proof of Theorem 3.7. Recall that by assumption j > 1, but we allow ¢ = n —p —k = 0.
Multiplying the outcome of Lemma 3.8 by (id; ® X* ®id;_1) on the left, we obtain

dn—l
dn

(ld & TI'l)((le RX*® idj)an) = 5q>0(1 — Ag)(ldl RX*® idjfl)Xp,qfl—F

+ 5p>oB;(idi RX*® idjfl)Xp,Lq + 5p>1Cg(idi RX*® idjfl)Xp,27q+1.

(n—1)

We apply Tr(i9 to this identity. Since X, , = P, X, P, we have e.g.

TP ((id; ® X* ® id;) Xpq) = H?H(X:jXp,q) = Trn (X[ ; Xp4q),
hence we obtain

dﬁl Trn(XZjXPﬂ) = dg>0(1 — AZ)d;il Trn—l(*ijlep,q—l)‘F

+ 5p>oBZd511 Trp—1 (X'fj—lXp*LQ) + 5p>103d;31 Trnfl(X?k,j—lprZqH»

K3 2

This corresponds to the identity in the statement by definition of the Gram matrix G, using
the Peter-Weyl expression of the scalar product. O
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Lemma 3.9. Fiz qp € ]0,1[ and assume that q € ]0,qo]. Then there ezists a constant C > 0,
depending only on qq, such that

|Gsipl < Clm —k+ 1) |z]l3  and

Gpp 2 (C™' = C(m— k)qu)Hv’UH%
ifeeWrand0<i#p<m-—k.

Proof. Since G, is symmetric we can assume i < p < m — k. We have |Re(u)| < 1 and for
p < m — k Lemma 1.2 shows that we have |BI'| < 2¢"+1/(1 — ¢%)?, |C"| < ¢*+D) /(1 — ¢%)2.
Since moreover A" € [0, 1], the recursion formula of Theorem 3.7 and Lemma 3.3 imply

| mz,p| < 5;n<m k‘Gm 1,1,19’ +3qk+1( )75”1’”%

We iterate this inequality m — p — k + 1 times, until we reach Gp4x—1,ip, in which case the first
term disappears. This yields the first estimate with C' = 3/(1 — ¢2)°.

For the second one, let us start with Gi,.00. In the recursion relation of Theorem 3.7 only
the first term is non zero when ¢ = p = 0. By an easy induction we have thus

m m didj—
Gmoo=Groo [[ =45 == ] (1 B d];df_f) '

I=k+1 I=k+1

Using the explicit expression of the dimensions d; and the fact that 1 —¢?* <1 —¢% if | > k we
obtain the following lower bound, which depends only on qq:

m 1 — g2k+2
o = 2B ] (1—q2<l ploa )= ))

Al (1— @2)(1 — g7

oo oo
> 2l TT (1-¢*9) = leI3]J0 - a) = "l
=1

I=k+1

increasing C' if necessary. Since ||z[|2 = ||z*||2, the same estimate is true for G,m—km—r by
Lemma 3.2.
For the other diagonal terms we use again the recursion equation, which yields for p < m — k:

Gmipp = (1 - A )Gm—1pp — 3qk+1(1 - q2)_5||:li||%.
Again we iterate until m = p + k + 1, obtaining
! k -
Gmpp > Gp+k;p,pn?ip+k+1(1 - A ) —3(m—p—k)q +1( ) 5”33”%

The coefficients 1 — Aé do not appear in the second term since they are dominated by 1. We
have already proved above that Hﬁp g1 (1= Aé) > C~! (replace k by k + p) and so we obtain
Gpp 2> C72||2][5 — C(m — k)g" |23 O

The estimates we have obtained about the “fixed size” matrix G,, will be sufficient for our
purposes only in the ¢ — 0 limit. This corresponds to letting ¢+¢~! = N — oo, and apparently
we are thus varying the spaces Hi, Hi. However, let us note that the numbers

Grip = dp TrP" [Py (id; ® X* ®id;) Py (idp, ® X @ idy)]

do not really depend on the precise form of the matrix X € B(Hj)°°, but only on k, ||z|/2 and
on the eigenvalue p of the rotation operator p corresponding to X. Indeed, we can expand the
projections P, into linear combination of Temperley-Lieb diagrams 7, whose coefficients depend
on n, w and the parameter g. Moreover, after this expansion the evaluation of

TrP"[Tr(id; @ X* ®1d;) T (id, @ X ®idy)]

is given by the evaluation of a Temperley-Lieb tangle at X* and X. Non-vanishing terms
necessarily correspond to tangles where strings cannot start and end on the same internal box,
and so they are of the form Trg[p"(X)*p*(X)] = p* ¥ X||3 = dpp®*||2||3. As a result Gy p
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can as well be considered as a function of k, j, ||x||2 and g. Then it makes sense to take a limit
q — 0, and this will allow to prove results “for large N”.

Theorem 3.10.
(1) For all qo € ]0,1[ there exists C > 0 such that, assuming q¢ < qo, we have |Gy (z)|| < C
for all x € W and all n.
(2) There exists g1 € 10,1[ and D > 0 such that, assuming q < q1, we have |Gy (z)7Y| < D
forallz € W and all n.

This shows in particular that {x;; | + € W,4,j € N} is a Riesz basis of H°® if ¢ < ¢, and that
the map @ : (2(N) ® H°® ® (*(N) — H°, §; ® x ® §; — x; j from Remark 2.15 is an isomorphism.

Proof. Fix qo € ]0, 1] and assume ¢ < qo. In this proof C' denotes a “generic constant” depending
on qp, that we will only modify a finite number of times. We take the constants C' > 0 and
a > 0 of Lemma 3.4 and we fix the “cut-off width” [ = k + [(3 + k)/«]. We will distinguish
three regimes for the coefficients of our Gram matrix: the diagonal entries, for which we have
the trivial estimate of Lemma 3.3 and the lower bound of Lemma 3.9 ; the entries Gy, with
0 < |i — p| < 21 for which we have the uniform estimate of Lemma 3.9 with a good behavior as
k — oo ; and the entries such that |i — p| > 2[ for which we have the off-diagonal decay estimate
of Lemma 3.4 with a bad behavior as k& — oo.

Recall that Lemma 3.4 shows that |G| < Cq®P=1=F)=2=F|| 2|12 if |p —i| > k, which by
definition of 1 yields |Gy p| < CgTP=iI=0|z||3. In particular for |p —i| > 2/ we obtain
(Gusip] < Cqt+elp=il/2] 2.

We then deal with the entries such that 0 < |p —i| < 2. First assuming n > 2I + 5k + 1, we
approximate each such entry G,.;, by a corresponding entry Gp,;i—qp—a of the smaller matrix
Gy with m — k = 21 + 4k + 1, using Lemma 3.6. Writen =1+ k+j=p+k+qg=m-+a+0b.
If 4, 7, p, ¢ > 2k we can choose a, b such that ¢ —a, p—a, 7 —b, ¢ — b > 2k + 1 — we can
e.g. take a = min(i,p) — 2k — 1, and since |i — p| < 2] we have i — a < 20 + 2k + 1 hence
j—b=2l+4k — (i — a) + 1 > 2k and, similarly, ¢ — b > 2k. We have then

|Gn;i,p - Gm;ifa,pfa| < CqH_kaH%

If i <2k or p < 2k we use the case a = 0, we have then j —b > 2k + 1 (resp. ¢ —b > 2k + 1)
and the estimate still holds. Similarly if j < 2k or ¢ < 2k we use the case b = 0.

Now if i # p Lemma 3.9 shows that |G.i—ap-a| < C(m — k + 1)¢"||z||3. Altogether we
have obtained the estimate |Gy.p| < C(20 + 4k + 3)g'™*||z||% if 0 < |p —i| < 2. It holds
also if n < 2l + 5k + 1 by applying directly Lemma 3.9 with m = n. Observe moreover that
I <(1+a Hk+1+3a7! < 6a k. In particular the sequence v = (21+4k+3)q§/2 is bounded,
hence we can modify C so that |G| < Cq'T*/2||z||3 for 0 < |p —i| < 2. In that case we have
lp—i| < 12a7 'k, hence we have as well |Gy.i | < Cq'+elP=il/24|| 2|2, Merging this with the case
|p—i| > 21 we have finally |G),.; | < Cq'TeP=1/24||z|3 for all i # p, where C' and « depend only
on qo.

Decompose G, = Gn + Gn, where Gn is diagonal with the same diagonal entries as G,,.
The previous estimate shows that G,, is bounded, more precisely for any A € £2 (N) we have by
Cauchy-Schwarz

Zi,pj‘i)‘Pén%p < (Zz‘,p‘)‘i‘Q ’én;i,p|)1/2(21,;)’)‘19’2|én;i7p‘)1/2

2¢' /2023

2
R L

< Cqll=|l3 Zz‘|)‘i|2Z|p—i|21qa‘p_i|/Q4 <

This shows that |G\, || < Cql|z||3 for all n and z, after dividing C by 2/(1 — qg/24). On the other

hand we also have ||Gy|| < ||lz]|I3/(1 — ¢3)® by Lemma 3.3 and the first assertion is proved.
For the inverse of G, we need a lower bound on the diagonal entries. We proceed as above,

approximating each coefficient G, by a diagonal coefficient G,.p—q p—a Of a smaller matrix
Gy, with m — k = 1 + 4k, and either a = 0, b =0, or p —a = 2k + 1 = g — b. This yields
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1Grnpp — Gmp—ap—al < Cq"1|z]|3. Then we use the lower bound of Lemma 3.9, obtaining
Grpp > C7H |3 = Clm =k + 1)¢" |3 > 7|3 — Cal4k + 2)qg]|3.

Again if m = 1 4+ 5k > n we obtain this estimate directly from Lemma 3.9, without using

Gm. Since the sequence vy = (4k + 2)g is bounded, we can modify C so as to obtain Gy.pp >

(C~'—Cq)||z||3. For g small enough, C~' —Cq > 0 and this shows G;;! < (C~!—Cq)~!|z|3 2L
Now we write G, = (I+G,G,;")G,. The estimates obtained above show that we have

|GGt < D(q) := Cq/(C~'—Cq). For q; small enough and q < ¢; we have D(q) < D(q1) < 1

so that GG, is invertible. Moreover we have

(3:2) Gt =G (1) (GG

so that |G| < (C71 = Ca1) ™' (1 = D(an)) [l 0

Remark 3.11. Using the recursion relation of Theorem 3.7 and the symmetry properties of G,,,

one can compute GG, by induction on n. Numerical experiments then show the existence, for all

q €10,1[, of a constant C' > 0 such that |G| < C|lz|3, |Gt < C|lz||l3? for all n, k, x € Wy.

Thus our proof is far from optimal and we strongly believe that the results of Theorem 3.10
hold for all ¢ € ]0, 1] (with constants depending on g).

4. AN ORTHOGONALITY PROPERTY

Recall from Sections 2 and 3 that we have an isomorphism of normed spaces ® : 2(N)® H*°®
??(N) — H°. In this section we shall establish a crucial asymptotic orthogonality property of
the following subspaces:

Notation 4.1. For every m € N we consider the following subspace of H®:
Vi = @ (KQ(sz) ®Q H®° ® EQ(sz)) = Span{x;; | x € H®,i,j > m}.

In the rest of this section we will prove that for y € p,(H®) C M the scalar product (Cy | y¢)
becomes small, uniformly on unit vectors { € V,,,, as m — oo, cf. Theorem 4.9. We start by
computations in Corep(FOx) which culminate in the “local estimate” of Theorem 4.5. In these
computations = uy(X) is a fixed element of py, H°°, which is not assumed to be an eigenvector
of the rotation map p. We then assemble the pieces to come back to H(k) and finally H°.

Recall from Section 1 that by Tannaka-Krein duality products x; jy, yx;; can be computed
from the elements X %, Y, Y #,, X;; € B(Hp,) if x = ui(X) and y = uy(Y). Recall also
that we use the Hilbert-Schmidt norm || X||s := Tr(X*X)Y/2 on B(Hy). We have |[AX B2 <
|A||1 X ||l2]| Bl|, where [|A||, ||B]| are the operator norms of A, B € B(Hj). This yields for
instance the inequality || X; ; *m Y2 < dol|Xij|2/|Y]|2, where m =i+ k + j +n — 2a, and we
recall moreover that [|X; ;lla < \/d;d;|| X]||2, see e.g. the proof of Lemma 3.3. We still make

repeated use of Lemma 1.2 which allows to replace d; with ¢! up to multiplicative constants.

Lemma 4.2. Fiz k, n € N and X € B(Hy)®°, Y € B(Hy,)°. Then for alli>mn, r € N, j > 2r,
m=n+i+k+j—2a with 0 <a <mn, there exists Z € B(H,,—2,) such that

Y 4 Xij = Pon(Z @ idar) Prall2 < Cag™ 70720\ /did| X |2 ]| Y |2,
where C'is a constant depending only on q, and || Z||2 < dar/didj—2:]| X|2]|Y |2-
Proof. We have by definition
Y st Xij = Pr(idn—q ® t), ® idiphtj—a) (dn ® Piyps;) (Y ®id; ® X @ id;)
(idy ® Piyk+j)(idn—a ® to ® iditktj—a) Pm-

We use the estimate from Lemma 1.3 as follows: Piypi; ~ (ida ® Piyryj—a) (Pipitj—2r © iday)
up to C¢"tk+i=2=2r in operator norm. Since (id,_, ® Py k+j—q) is absorbed by P, we can write

Yok Xij ~ Pp(idp—q ® 1), @ idjqpyj—a)(idn ® Piypyj_or ®ide)(Y ®id; ® X ® idy)
(idn by Pi+k+j—2r by id2r)(idnfa Rtq & idi-l—k-i—j—a)Pm
up to 20 ||ta |2 T2V ®id; ® X ®id;||2 = 20d.q EH9=9=2 /d;d;|| X ||2]|Y[|2 in HS norm.



MAXIMAL AMENABILITY IN FREE QUANTUM GROUP FACTORS 23

This yields the result with
Z = Pm—QT (idn—a ® t: ® idi+k+jfa72r)(idn ® Pi+k+jf2r)(Y & ldz RX® idj—?r)
(1dn & Pi+k+j—2r)(idn—a @ tZ ® idi+k+j—a—2r)Pm—2r
which satisfies the right norm estimate. Note that we have Z =Y *,,_2, X; j_o,. O

Lemma 4.3. Fiz k, n € N and X € B(Hp)*°, Y € B(H,)°. Then for alli > n, p € N,
j>2n+3p, m=n+1+k+j—2a with 0 < a <n, we have

1(id @ Ty 42p) (Xij #m Y)l2 < Cq™Pg P %~ T2 X || V]2,
where C' > 0, a € 10,1 are constants depending only on q.

Proof. In this proof C' denotes a generic constant, depending only on ¢ and that we will modify
only a finite number of times.

We write Trp19p = (Trp @ Trppq @ Tr—q) (Pug2p - Pnt2p). Applying this to X j %, Y, the
projections id ® P, 2, are absorbed in P,:

(id @ Trp42p)(Xij #m Y) = (idm—2p—n ® Trp @ Trppq @ Try—g)|
Pm(idm—n+a b2 t; & idn—a)(Xi,j ® Y)(idm—n—i—a Rty ® idn—a)Pm]

We shall proceed to three successive approximations to show that this quantity is almost zero.

We first use the estimate Py, >~ (idm—p—n ® Ppin)(Pr—n+ta ® idy—q) up to CgP® in operator
norm, from Lemma 1.3. The projections Py, _y4+, ® id are absorbed by X; ; so that

Pm(idmfn+a & t;; ® idnfa)(Xi,j & Y)(idmfnJra Rty ® idnfa)Pm =
~ (idm—p-n ® Ppin)(idm—nta @ t; ®idp—a)
(Xi; @Y)(idm—nta ®ta ®idp—q)(idm—p-—n @ Ppin),

with an error controlled by 2CqP*%||t, ||| Xi; @ Y2 < 2CqPT%d,+/did;|| X |2V ]2 in Hilbert-

Schmidt norm. Observing that Tr, hits only X; ;, we obtain
(ld & T\I'2p+n)(Xi,j *m Y) ~ (idm_gp_n X Trp—l—a & Trn—a)[(idm—Qp—n X Pp—i—n)
(idm—n—p+a ® tz X idn—a)(Z @ Y) (idm—n—p—i—a Rt ® idn—a)(idm—Zp—n ® Pp+n)]7

where Z = (idp—2p—n ® Trp ®idpi2q)(Xi ;). We denote the right-hand side by ®(Z), with
¢ : B(Hpm—2p—n ® Hpyoq) = B(Hp—2p—n). After applying the trace Tr, ® Trpyq ® Tryp—q, see
e.g. Lemma 1.5, the error is controlled as follows:

1Gd ® Trapn) (Xij #m ¥) = ®(Z) 2 < 20¢"*da/dpdp+adn—adids || X [12[[Y |2
< 2Cq~ | X ||V )2,

up to dividing C by the appropriate power of 1/(1 — ¢?), cf. Lemma 1.2. This error is less that
the upper bounded in the statement.

Then we use the estimate Pjyj i ~ (Pijitp ®idj—p)(idipr ® P;), up to C¢P in operator norm,
in the expression of Z. We have by assumption j > 3p + 2a, and in particular we can write

Z > (diyptj—2p—2a © Trp @idpr2a) [(Pigrap @ idj—p)(id; @ X @ P;)(Piyptp @ idjp)]
= (Pithtp ®idj-2p)(idi @ X @ P))(Pispeyp ® idj0p) =1 Z'
where P]’ = (idj—2p—2¢ ® Trp ®idpr24)(Pj) € B(Hj—2p—24 @ Hpy24). The error in Z is controlled
in HS norm by 2Cq¢"\/dp||P; ® X ® Pj||2 = 2CqP\/d,d;d;|| X||2, so that
12(2) = 2(2)||2 < 2Cq"da/dpdp adn—adid;|| X [l2]|Y 2
< 20q g IR X || V2.

Again this is better than the estimate we are trying to prove.
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Now Lemma 1.6 shows that P]f ~ \(idj—2p—24 ®idpy24) in B(Hj—_2p—24 ® Hpi24), up to Cq*Pd,
in operator norm, for some constant A depending on all parameters (and o > 0 depending only
on ¢). In HS norm we can control this error by Cq®?d)+/dj—2p—2adpt24- This yields

7' ~7" = AP, itktp © 1dj3p— 20)(id; ® X ® ld] 2p— 2a)(Pi+k+p ® idj73p72a)] ® idp+2a;
and we have the control
18(2") = ©(Z2")|l2 < Cq*Pdadypr/didj—2p—2adp+2adp+adn—al X [[2]Y |2
< CqPqq Pq 2| X ||o|[Y |2,

which corresponds to the estimate in the statement.
We finally arrived at

Q)(ZN) = )‘( z+k+p®1d3 3p— 2a)(1d ®X®1dj 2p— 2a)(Pz‘+l~c+p®idj 3p— 2a)
(Terra ® Trnfa)[(ldp+a ® t, @ idy,— a)(ldp+2a ® Y)(ldera ®tq ®idp—a) p+n]

We claim that the second line above vanishes. Indeed (Trp4q ®idy—q)(Ppin) is a multiple of
id,,_q, since it is an intertwiner of H,,_,. We are then left with

Trp—o[(t: ®idp—q)(ide @ V) (ta ® idp—g)] = (Tre @ Try,—0)(Y),
which vanishes because y € p, H°. Hence ®(Z") = 0 and the result is proved. ]
Lemma 4.4. Forr <m/2, Z € B(Hpn-2), S = P (Z ®ida, )Py, and T € B(H,,) we have

(S T)] < Vdrll(id @ Trr)(T)|2[ Z]l2 + Cll Z|2/ T2,
for some constant C' depending only on q.

Proof. Recall once again from Lemma 1.3 that P, ~ (Py,—, ® id,)(idm—2, ® Pa,) up to Cq",
where C'is a constant depending only on ¢. Since T'(id,,—2, ® Pa,) =T = P,,T we have

(S| T) = Trp(Pr(Z* @idg,) Py T)
~ (Trp—2r ® Troy ) ((idm—2r @ Poy)(Pr—y ®id,)(Z* @ id,)T)
= (Trpm_2, @ Tr, @ Tr,) (P_r ® id,)(Z* @ id, @ id,)T)
= Tty [P (Z* ®id,) Py (id ® Tr,.)(T)].

By Cauchy-Schwarz the last quantity is dominated by v/d,||Z||2]|(id ® Tr,.)(T)||2. Moreover the
error term in the second line is similarly bounded by Cq¢"||Z* ®id, ®id,||2||T||2 = C¢"Vd,d,|| Z]|2
TNz < 1 Z 2] T1l2- m

Theorem 4.5. Fiz k, k', n € N and X € B(Hy)*°, X' € B(Hy)*°, Y € B(H,)°. Then for all
i,7,7,7>10nandm=n+i+k+j—2a=n+i+k +75 —2d with0 < a,d <n, we have

(X #m Y| Y st Xy )| < Oy (277 4 gm0 ) g2 X | X5V 3,
where a > 0 s a constant depending only on q, and C is a constant depending on q and n.

Proof. We put p = |min(j,5')/10] —n and » = n + 2p. Thanks to the assumption on j 7 we
have m > 2r. We first apply Lemma 4.2 to find Z € B(H,,—2,) such that ||Y x,, X/, ., — S||2 <

Cq' W+ =a'=2rq , Jdudy|| X'|2||Y|]2 with S = Py (Z ® ida,)P,,. The cond1t1on ] 2 2r is
satisfied since p < %j’ —n. We have then

(X s Y Y s X )| < (X ot Y1 S)] + 1 X om Y[2l[Y s Xy o = Sl2.
Note that || Xi; #m Y2 < dav/did;]| X |2]]Y ||2, and since 2r < j'/2 we have
X5 #m Yll2llY s Xis jy = Sllz < Cq" =42 dydy/didydindyr || X ||2| X [o||Y 3
< Oq"Pq TR g2 X || X |2 Y113
< Cuding" ' 2RO X 5| XY 113,
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were C), is a constant depending on n and q. We apply then Lemma 4.4 to T' = X ; *,, Y and
our S. This yields
[(Xij #m Y [ S)| < V|| (id @ Trr)(Xi j #m Y) 2l Zll2 + Cl|Z]]2]1 Xi j #m Y [2-

Lemma 4.2 also provides a bound on || Z]|2, in particular the second term on the right-hand side
above is bounded by

Cdyrdar/didjdirdyr—2 || X ||| X' 2|V 3 < Cq~ g~ TG X 1o X |12 Y13
< Cpdyngs ™07 g2 X ||| X[ V]13,

since we have 7 > £ min(j, j') —n — 2.
We finally apply Lemma 4.3. Again the condition j > 2n+ 3p is satisfied because p < 1—10 j—n.
This yields constants ag € |0, 1[, C' > 0 depending only on ¢ such that

V.|| (id @ Tr, ) (T)|2]|Z |2 < C/drg®PqgPq= %~ /24, [ddi o || X ||2]| X' ||2]| Y13
< OqoopgPT/2gmazal = (ki) 2= HD/2) X 1o | X ||| V|13

< Cndng®PgF 2| X o || X o[ Y3
Since p > == mln(] j") —n — 1, this yields the result, with & = min(ag/10,1/5). O

Corollary 4.6. Fiz k, k¥, n € N and v € p,H*°, 2’ € ppH®°, y € p,H°. Then for i, 1, j,
3" > 10n we have

’(l'%]y ’ ymz’ )’ < C a(i+j) + qa(i'—i-j’) + qamax(min(i,i’),min(j,j’)))HxHZHle2HyHg,
where a > 0 is a constant depending only on q, and C is a constant depending on q and n.

Proof. We have © = up(X), 2/ = up(X'), y = u,(Y) with X € B(Hy)*°, X' € B(Hy)°°,
y € B(H,)°. Recall from Remark 2.8 that we have then x;; = w;yr4;(X; ;). Following the
reminder in Section 1 — specifically Equation (1.4) and Notation 1.1 — we obtain z; jy =
Zzzo(mﬁkﬂ’n)zum(Xm *m Y), where m = i + k + j +n — 2a as usual. The same holds for
yxy ;r, and the Peter-Weyl-Woronowicz Equation (1.1) yields

n

(zigy |y ) Z (REHEFIn g TRV (X e VY o XD ).

According to Lemma 1.4, the constants x are uniformly bounded by a constant depending only
on q. Applying Theorem 4.5 and noticing that ¢*/2|| X ||» = ¢"/2/dg||z|2 < C||z||2 we obtain

|(@igy |y ;)| < C@ ) 4 ¢ m0D) [z ]a]|2’ |12y )13,

where C' is a constant depending only on ¢ and n.

The estimate in the statement follows from this one by symmetry, by switching left and right
in Lemmata 4.2, 4.3 and 4.4. More precisely, recall that the antipode S is isometric on £2( ) in
the Kac case, and observe that S(x;) = xi, so that S(z; ;) = S(x);:. Applying the first part of
this proof we thus get

(i gy |y )| = [yl o | zigy)l = 1S (@) 0 S(y) | S(y)S(x);.)]
< C(g*H) 4 g™ D) |l]|o|2” |2y 13-
Taking the best of this estimate and the previous one yields the result. O

To pass from the “local” result of Corollary 4.6 to the “global” results of Proposition 4.8 and
Theorem 4.9 we will need to analyze the kernel appearing on the right-hand side in Corollary 4.6.
We state separately the following elementary lemma which will be useful for this purpose.

Lemma 4.7. Let A, B € >(N x N) and put gy 1 = gax(min(i.k),min(p—ip—k)) -~ Then there exists
a constant C' > 0 depending only on q such that

Zizo Zkzo szi,k QPﬂ':k‘Ai,P—inyP*k‘ < C[|A|[2]|B]l2-
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Proof. Denote T = {(i,k,p) € N3 | p > i,p > k}. We start by applying Cauchy-Schwarz:

(ZT QP;i,k|Ai,p7in7p—k|)2 < ZT ‘Ip;i,k’Aim*iF X ZT qP;i,k|Bk7p—k|2-

Aip—i|? < C||A||3, which we can
also write Y720 Y spil Aip—il® < C[|A[3 with sp = 3"} _ qpii k- This holds for all A if and
only if s,; is bounded independently of 7 and p. Since g, 1 = @pp—ip—k We have s, = spps,
thus we can assume 0 <7 < p —i. We write then

P
- »
Spyi = Z Apyi ke = (Z;c:o + Zi:ﬁ + ZZ:p—i—H) pyi.k
k=0

1 mxk ] —1 max(i,p—k
_Zz ax(k,p— z)+< i:z_‘_zizpﬂdrl)q ax(i,p—Fk)

:iqp*i—i-( ﬁzpk)+zq <2sup(zq)+1q O

Recall from Notation 2.11 that for w € W, k € N* we denote H(w) resp. H (k) the closure of
AwA resp. AW A in H°, where W is our privileged basis of H°°. Recall from Notation 3.1 that
we denote G(w) the Gram matrix of the family of vectors wj ;, for w € W.

Proposition 4.8. Fiz k, k', n € N* and y € p,H°. Assume that we have a common upper
bound ||G(w)~Y| < D|w|5?, ||G(w)|| < D|w|3 for all w € W), U Wy Then for any m > 10n
and ¢ € VN H(k), ¢' € Viu NH(K') we have |(Cy | y¢')| < CDg™m=k=KD|ic|l|[c’||, where o > 0
18 a constant depending only on q, and C is a constant depending on q, n and y.

Proof. By assumption the map (w,?,j) — w;; induces a bicontinuous isomorphism between
prH®® ® (2(N x N) and H (k). More precisely, since AwALAw’'A for w # w' in Wy, the Gram
matrix G(k) of (w;;)ijw, With w € Wy, i, 7 € N, is block diagonal with G(w), w € Wy,
as diagonal blocks, and thus it is bounded with bounded inverse by hypothesis. We can in
particular decompose ¢ = Z (ij); ; With x(i,j) € pxH® and, denoting z = (x(ij));,j, we have
lz||3 = >l i)|? < D||C||2 Slmﬂarly we write ¢ = Y, 5 2'(i.5); ; with 2'(ij) € pp H® and
|lz'||3 < D||¢’||?>. We have then by Corollary 4.6:

[(Cy [y < 325 2 (@i y | ya' @i )]
(41) <C Zz] Zz P ( (i+3) _|_q a(i’+35") +qamax(mln(zz)m1n(]j) )H$ Z])|"|$/(i',j/)H

i,J

where C' depends on ¢, n and y. Since ¢, (' € V,, we have x(i,j) = 2/(i",5/) = 0 unless i, 7, 7/,
j" > m. Moreover the scalar product (2(ij); ;y | y2'(',j");r ;) vanishes unless u;yxy; ® u, and
Up ® Wi k45 have a common subobject, which entails |i +k+j — i — k' — j/| < 2n. We remove
from (4.1) the terms that do not satisfy these conditions. Moreover we regroup the three powers
of ¢ that appear in (4.1) into three distinct sums Sy, Sz, S3 over i, 7', 7, 5.

We start with S3. Denote p = i+ j —2m, p' =i + 35 —2m, | = p —p’. This yields a
bijection (4,4, 7,5') ~ (I,4,7',p) in Z* and we shall compute S3 by summing over (I,4,#,p) in
the appropriate subset of Z*. If [ > 0, we put furtheri =i —m €N, 7' =i —m+1 € N>;. Note
that j —m =p—2and 7/ —m = p — 7, so that
Hlln(l', /| — l)v min(p _l.ap - 1/)) +m
min (g

max(min(i, 7’), min(j, j')) = max( 1
i,4'),min(p —i,p — ') +m — ||

> max(

= qamax(min(i,i’),min(j,j’)) < qa(mf|l|)qa‘ )

p;ia"

using the notation of Lemma 4.7. If [ < 0, we put rather i =i —m -1l e N>_;, /' =i —meN
so that j —m =p' —i and j' — m = p’ — 4/, and we obtain:

qamax(min(i,i’),min(j,j’)) < qa(m—\l|)q§z/'i ..
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The constraints j, 7/ > m translate to p > 7,7’ when [ > 0, and to p’ > 7,7’ when [ < 0.
Re-organizing S3 we thus obtain

o o
Sz < Y Cq™ TN TN TN awtmap—itm) | |2 @ rmtp—im) || g

>0 =0 &=l p>i,i’
o0 oo
+ Cq* TN TN TN Nty —irm)|||2 @ ) | G
<0 i==li'=0p'>i,i/

For the terms [ > 0 we apply Lemma 4.7 with A, 3 = ||z(r+m,s+m)||, By s = ||/ (r+m—Ls+m)||,
which satisfy [|A||2 = ||z||2, || Bl|2 = ||2’||2- By adding vanishing terms to the sum we can assume
that the sum over 7’ starts at 7/ = 0 to apply this Lemma. We apply Lemma 4.7 similarly to
each term [ < 0. Observe finally that [l — (k' — k)| = i+ k+j—i — Kk — j'| < 2n, so that [ takes
at most 4n + 1 values and |I| < |k — k| + 2n. Lemma 4.7 thus yields the following upper bound:

Sz < OC'(4n + 1)g* "2 HD |z [a’|| 2 < C"Dg =D ]l|1¢')

with C” depending on ¢, n and y.

The case of Sy (and of S3) is similar but the counterpart of Lemma 4.7 is simpler. We put
i=i—m,j=j—m,1 =i —m,j = j —m. Observe that for non-vanishing terms in the sum
we have i +j —2m = S(p+p' +1) = 3(i+j) + 3’ +j') + 31, and still ||| < [k — k'| + 2n. This
yields, using again Cauchy-Schwarz:

$1=C 3 3 @G0 armgrm ) (g8 @l @ g sm))
4,j>04",5'>0

< Cqe@m=3E—H1=m) 3™ 36D g giml| 3 g3 ol g gm)|
2,j>0 i',3'>0

_Le—k— i 1!
< Oqa(2m 5 |k—FK'| n)||x‘|2||l,/||2 ngqa(frg) < C///an(m |k—Fk DHCHHC/H?
with C"" depending on ¢, n and y. O

Taking into account the finite propagation result established at the end of Section 2 we can
finally prove the following global estimate.

Theorem 4.9. Fizxn € N and y € p,H° C M. Take the constant q1 given by Theorem 3.10
and assume q¢ < q1. Then for any m > 10n and ¢ € V,, we have |(Cy | y¢)| < Cq™™||¢||?, where
a > 0 is a constant depending only on q, and C' is a constant depending on q, n and y.

Proof. We have the orthogonal decomposition ¢ = >, .y« e With ¢, € AW, A = H(k). Propo-
sition 2.16 shows that y(y decomposes into subspaces H(l) with |k — I| < n, and similarly (xy
decomposes into subspaces H(l) with |k — 1| < n, so that we have (y Lyl if [k — K| > 2n.
Proposition 4.8 applies thank to Theorem 3.10 and the assumption on ¢q. Thus we can write,
using Cauchy-Schwarz:

[y Ty < 2 —ky<onl ey | yCr)| < an(mﬂn)Z\k'—k\an”Ck”HCk/H
< g™ <anllGhll? < Cq¥ g (dn+ 1)|1C)12. O

5. SUPPORT LOCALIZATION

In this section we will show that for any m € N, elements z € A+ N M which almost commute
to the generator x; € A have a small component in the subspace spanned by vectors w; ; with
i <mor j < m, and from this we deduce the Asymptotic Orthogonality Property for the MASA
ACM.

Our strategy starts with algebraic arguments, using the constant structures for the left multi-
plication by x1 € A on the basis (w; ;), obtained at Proposition 5.1, to deduce relations between
a vector z € H(w) and its commutator [x1, 2], cf. Proposition 5.5. The main analytical input
is then an estimate on coefficients appearing in these relations that we establish at Lemma 5.7,
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and which allows to establish the main result of this section, Theorem 5.9. We can then prove
Theorem A by assembling the results of the article, following Popa’s classical strategy.

The following computation of the structure constants is mainly a reformulation of Lemma 3.8
that we already used for the study of the Gram matrix. Recall Notation 2.11 for the orthonormal
family W' = | |;,~; Wi which spans the A, A-bimodule H°. For w € W we have the associated
vectors w; j € AwA, where i, j € N. We agree to denote moreover w;; = 0 if i < 0 or j < 0.
Finally, let us recall the definition of the coefficients A, B, C from the statement of Theorem 3.7:

dpyrdpik—1 dpyr—1dp—1 dp—1d,—2
A" = p+EY%p+ B" =92(—1 kR P P or = — P P .
b dndnfl 7 P ( ) e(,u) dndnfl ’ b dndnfl
They depend on p € N and n € N*, but also on k£ € N and p € C which will be fixed most of
the time. Recall moreover that we are using the convention d, = 0 for p < 0.

Proposition 5.1. Let w € Wy with associated eigenvalue p of the rotation map, and consider
the associated coefficients A, B, C'. Then for any i, j € N we have, withn =i+ k + j:

X1Wij = Wit1j + (1 — A )wi—1j + Bjw; j—1 + Cjwit1,j-2.

Proof. According to the fusion rules we have x1w; ; = pn1(x1wi ;) +Pn—1(x1w; ), and moreover

Prnt+1(X1Wij) = Pnt1(X1XiWX;) = wit1,j because pn1(x1p(xiwx;)) = 0 if [ < n. We compute
the second term p,_1(x1w; ;) in the Tannaka-Krein picture: putting w = u;(X) with X €
B(Hj)°°, we have by (1.4):

Pt (x1wig) = (k)"1)? wno1(ids %1 Xy j).

Recall the basic intertwiner an’_"l = (PL®P,)(t®id,—1)P,—1. We have V1 n*V = (t*®idp—1)
(id; ® P,)(t ® idy,—1) = (Tr; ®id)(P,,) = (dy/dp—1)idy—1, so that (k n—l) = dn_l/dn. Moreover
we have by definition

idl *p—1 Xi,j = (t* X idn_l)(idl X Xi,j)( X ldn 1) (TI‘l ®1d)( )

Switching left and right in Lemma 3.8 (or applying the antipode as in the proof of Corollary 4.6)
we thus obtain

(k" )2 (i1 #n—1 Xy j) = Gim0(1 — AN X1 + 8j50B0 Xy jo1 + 0j51C0 X1 j—2.

n—1
This yields the formula in the statement. (Il
Corollary 5.2. Fizw € Wy, assume that {w;; | i,j € N} is a Riesz basis, and take an element
z = Zijzi,jwi,j in H(w). We put moreover z;; = 0 if i < 0 or j < 0. Writing similarly
[x1, 2] =32 ;[xa, 2lijwi; in H(w), we have

_ n+1 n+1 n+1
(X1, i = zic1j = i1+ Dz — Dl 4+ CF 2o jre — O ziga 1,

where we take n =i+ k+j and denote D} =1 — A} — Bp ;..

Proof. The proposition gives, by summing in H(w) over i, j € N:
Ai'—l-k—l-j)

X1Z = D25 %ijWit1, + D> (1 — 2i,jWi-1,j
i+k+j

k
+> 51 B H T zigwigo + D is0i O zijwit 2
k4541
= Diz1,j %i-1jWij + Zij( — A7) zig jwi
i+k+j+1 i++j+1

+22 ij B;+1 T zijwi g + ZiZLj C;+2 T 2 j2wiy.
With our convention we can add the terms i = 0 in the first and last sum, and for fixed i, j € N
this yields (x12):; = #zi—1,; + (1 — A?+1)Zi+1,j + B;-"fllzmﬂ + O o zZ 1 j+2, where n =i+ k+j.
We also have (2x1);: = 2j,i—1 + (1 — A?+1)Zj77;+1 + B;’j:l Zj41,i + cm, 2 z]+2 i—1 by symmetry (or
by applying the antipode). Switching ¢ and j this reads (2x1)i; = 2ij—1 + (1 — A"Jr )Zij+1 +

n+1 . : : : n+l _ 1 _ n+1 n+1
Bz+1 z1+173+01+2 Zi+2,j—1 and a substraction yields the result, since Dj =1 Aj Bz+1 O
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Iterating Corollary 5.2, we shall obtain more relations between a vector z and the commutator
[x1,2]: cf Equation (5.1) below where the case p = 1 corresponds in fact to Corollary 5.2.
For fixed m, [, the collection of relations (5.1) for varying p will yield the crucial estimate of
Theorem 5.9. The coefficients appearing in (5.1) are introduced inductively as follows.

Notation 5.3. We fix k € N*| |u| = 1, and m € N. We define families of coefficients fua gzg

for i, j, 1, p € N, and gZ)Z-’p for [, p € N, ¢ € Z, by induction on p, as follows For p = 0 we first put

f-l’q = 0(i,j)=(m,) and gf =0 for all [, 7, 7 € N. Then assuming that f are constructed

0.J
for a given p and all [, i, j € N we first put

Z +p 8,l+p+s

s=—p

]791]

for —p < i < m+p and ¢, P — 0 for the other values of i € Z. Then we define gz’erl = gf:f if

i+j<m+1+2p—1, gl’p+1—¢m+p Z1fz+]—m+l+2p+1andgz’p+1—Oelse Finally we
putfl’p+1—01fz+]7ém+l+2p—l—2,and

Lp+1
fzgp _Dnd)m—&-p i 7Dn¢m+p z+1+CZn¢m+p z+270n¢m+p i—1
ifi+7=m+1+2p+2 withn=4i+k+j.

PP = 0ifi+j=m+1+2p+2and

i >m+2p+ 2, because then m +p—1i < —p — 2. Hencef’pzounlessi+j=m+l+2pand

Remark 5.4. The last relation in fact implies also f;

1 < m + 2p. By definition, one can recover the coefficients f from ¢ as follows: fl

m+l+2p i
¢lrf+p7i71 - qﬁmﬂ, ;fori=0,...,m+2p (which for i =m —|— 2p also reads f-P e 2pl = — g "), and
fl’p =0ifi+j # m—+I1+2pori > m+2p. Also, we have gi)i = —1for 0 < ¢ < m and 0 otherwise.

On the other hand, we also record the fact that gl’p =0unlessm+I14+1<i+j<m+Il+2p—1
and 7 + j, m + [ + 1 have the same parity.

Proposition 5.5. Fiz w € W with associated p-eigenvalue p, and m € N. Assume that
{wi; | i,j € N} is a Riesz basis. For any z =), - z; jw;; € H(w) we have, using the coefficients
of Notation 5.3:

(5.1) VpeN,leN Zml—mezz,g‘f‘Zg”Xl,
1,JEN i,jEN

2%

Proof. We proceed by induction over p, noting that (5.1) holds trivially for p = 0. Assume now
that it is satisfied for some fixed p € N. Using Corollary 5.2 we then write, with the convention
i =m + 1+ 2p—1in each term of the sums:

2 2
Fml = Zm+ Y f il il T Zm+ P (bm—i-p z(zz 1i/+1 — Zi,i’)
J. +2
+ Zijgijb{la i + Zm P m+p iIxa, 241
2
— T m+p i(Djp1zivrier = Dizigs + O gzi1es — Cllia2ivan),

where n = k+m+1+2p+2 = i+ k+ 4 + 2. By definition of the coefficients ¢, the
first two sums cancel each other: indeed z;;, for 0 < i < m + 2p, appears with the factor
qﬁf;ﬁ_p i1 ¢if+p ;= Zl el 2p—i in the second one. The fourth sum contains exactly the terms
missing to the third one to pass from gl P to gz’p +

7erl m+2p
=259 baszlig—22i20 ¢>m+p Dy zi1i+1 — Dl zirgo
+ Ciryazi-1i+3 — CiyoZita,ir)
_ Lp+1 m-+2p+2 l,p l,p
ZZJ gz [Xl’ ] 7] + Z Z'ivil“r?(qsm—}—p 'LDn - ¢m+p i+1Di /42

+¢m+p H—QCn (z)m—l—p i— 1CZ?}+2)’

, so that we have
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still with n =k + m + 1+ 2p + 2, and using qﬁé’p =0 for i < —p or i > m + p. We recognize in
the last sum the definition of fi’f“, with j =m +1+42p—i+2 =14 +2, so that (5.1) holds for
p+ 1. ]

Now the main tool to obtain Theorem 5.9, together with the relations (5.1), is an estimate
on the coeflicients ¢ that we establish at the elementary but technical Lemma 5.7 below. First
we prove the following easy estimates on the coefficients C' and D.

Lemma 5.6. For any a € N, b€ NU{—1} and k € N* we have, puttingn =a+ b+ k + 2:
3qa+b+3q—|b—a+1|
(1—¢*)(1 —¢>+2)’

n—a+b+1 2n—2b

q
cr ol < .
‘ b+1| —= (1 _ q2n)(1 _ q2n+2)

|Dyyq — Dyl <

2q
(1—¢*)(1 —¢*+2)’

Proof. We start from the identity

Dy <1+

dn—p—2dn—p-3 — dp—a-1dn—q-2 = id2n7a7b73d|b7a+1\71'

This can be seen by a direct computation using ¢g-numbers, or using the fusion rules as follows.
Both sides vanish if a = b+ 1, according to our convention d_; = 0 (and otherwise all indices
are in N). Assume for instance a < b+ 1. Then d,,_p_od,,—p—3 (resp. dp—q—1dn—q—2) is the sum
of the dimensions d. where ¢ is odd and ranges from 1 to 2n — 2b — 5 (resp. 2n — 2a — 3). On
the other hand the right-hand side is the sum of dimensions d. where c is odd and ranges from
2n—2b—3 to 2n — 2a — 3, so that the relation holds with a negative sign. The other case follows
(with a positive sign) by exchanging a and b+ 1. Dividing out by d,d,—1 and using the estimate
g (1 — ¢**2) = (1 — ¢*)d. < ¢~ ¢ we obtain

don—a—b—3d)p_as1|1 oto3—lb—a+1]

ot (L= @)1= )
One can proceed in the same way with the constants B. By the same reasoning as above, or
by a direct computation, we have

(1= Api) — (1= Al =

dadp—p—2 — db+1dn—a—1 = idnd|b—a+1|—l7

indeed the products on the left are equal to the sum of the dimensions d. where ¢ has the same
parity as k and ranges from k to n+a—b—2 (resp. from k to n—a+b), so that in the difference
cranges fromn+a—bton—a+bifb>a—1 (resp. romn—a+b+2ton+a—>b—2if
b < a—1), and we find exactly the same terms on the right. Dividing out by d,d,—_1 this yields

n—|b—a+1|

dndjpy—ay1-1 <9 q
dndn—l — (1 _ q2n+2)(1 _ q2n)'

Since n > a + b+ 3, adding this estimate and the previous one yields the first estimate of the
statement.

The other estimates are easier. We have clearly 0 < Ay | <1, hence Dy, <1+ |Bp, 4|, and

|BZ}+1 - Bz?+2| = 2| Re

using again the estimates (1 — ¢?)d. < ¢~¢ we obtain

A Qqn—a—i-b-‘rl
By, 1| = 2| Re p| = .
| Byl | Re p dndn_1 — (1= ¢>2)(1 — ¢27)
Finally the estimate for Cj', | follows exactly like the one for By, above. O

Lemma 5.7. Assume that one can choose 3.4 < R < 0.995/(2¢%). Take k € N*, |u| = 1,
and m € N. Then there exists a constant K, depending only on q and m, such that |¢i-’p| <
K@U (2R for alll >m, pe N and —p < i < m +p.

Proof. Note that the assumption implies the inequalities 6¢°> < 2R¢? < 1, and in particular
q® < 1/6, which we will use frequently in this proof. The recursive construction of the coefficients
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f yields the following recursion relation over p for the coefficients ¢. For —p—1<i<m+p+1
we have, puttingn=m+1{+2p+ k + 2:

i
¢l’p+1 _ fl,P—i-l
) - E : m~+p+1—s,l+p+1+s
s=—p—1

i
_ Lp Hyn Lp pn Lp ~m Lp ~m
- Z (gbs Dl+p+1+s - ¢s—1Dm+p+1—s + ¢s—20l+p+1+s - ¢s+lcm+p+1—s)
s=—p—1

— lzp l’p
= & (Dl pr14i — Cop—iza) — 001 Cnp—in

i—1
l7p n n . n n
+ Z ¢s (Dl+p+1+s - Dm+p—s + 5SSZ*2CI+p+8+3 - Cm+p—s+2)’
S=—p

since d)ls’p =0if s < —p.

We now combine this recursion relation with the estimates of Lemma 5.6. We still take
n =k+m+1+2p+2 and we denote p, = (1 —¢**)~ (1 —¢*"*2)~1. Note that we have p, < p;
if t < n, and p3 < 1.005 (by comparing with the value at ¢ = 0.995/6.8). Since k > 1, we have
n > 3, hence the estimate p,, < 1.005 that we will use later in the proof. Now Lemma 5.6 gives,
for —-p—1<i<m+p+1:

Ip+1 [ —m+1+2i+1 2n—2m—2p+2i—2 l, 2n—2m—2p+2i
‘¢ip ‘§’¢ip’(1+2pnqn m-+I+2i+ +ann m—2p+21 >+’¢i}:1’pnqn m—2p+2i

i—1
+ Z ’¢é,p| « (3pnqm+l+2p+3—|l—m+2s+1| +an2n_2l_2p_28_4 +pnq2n—2m—2p+2s—2).
s=—p
Observe that the sum vanishes for ¢ = —p — 1, as well as qSl;pfl, ¢£f+p+1 and ¢if+p+2 by

convention. Since k > 1 and [ > m, and using the value of n, we have the following lower
bounds for —p < s <7 —1:

n—m+l+2i+1>2p+i+m+2),

2n —2m —2p+2i > 2(p+i+m+3),
m+l+2p+3—|l—-m+2s+1]>2(p—|s| +m+1),
2n—21—2p—2s—4>2(p—|s|+ m+1),

2n —2m —2p+2s—2>2(p — |s| + m+2).

Applying these bounds and factoring 3 +1+ ¢ < % in the sum we arrive at the slightly simpler
estimate:

i—1
! l, ; l, ; _
‘(bi’p—’—l‘ < ’¢1p| (1 + 3pnq2(p+z+m+2)) + ’¢if1’pnq2(p+z+m+3) + %E)pn Z ‘(bls,p’qZ(p |s\+m+1).
s=—p

Then we denote wi’p = \(ﬁé’p\q*%‘ (2R)™%, so that our aim is now to find K such that wﬁ’p <K
forall [, pe N, —p < i < m + p. For ¢ the previous estimate becomes

i1

wﬁ:erl < ¢E7P(1 + 3pnq2(P+i+m+2)) + ¢ﬁf1pn2Rq2(P+i+m+2) + %pnq2(p—li\+m+1) Z (2R)3—i,¢ls,l7’
s=—p

where we have used |i + 1| — |i| > —1 in the second term. Let us denote K, = (6¢%)™™ x

:;é (1 + ¢*), which is increasing with r and starts with Ko = (6¢)™™. We will prove, for
each [ > m by induction on p, the following estimate:

. l
(Hp) Vi e {_p7 Y A m} wiyp < Kp+mf|i|'

For p =0 and 0 < 4 < m we have indeed qﬁé’p = —1, hence wﬁ’p = (2R¢*) 7 < (6¢°) ™ < Kppji|-
Assume now that the estimates hold for a fixed p € N, and let us establish them at p + 1.
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Together with (H,), our recursive estimate on v yields, for —p —1 <i <m+p+ 1:

¢§7p+1 < 6*p§i§p+pr+m—\i| (1 + 3an2(p+i+m+2)) + 6i§p+mflKp+m—|i+1|pn2Rq2(p+i+m+2)
i—1
(5.2) + %pan(p—‘ZH—m-‘rl) Z (2R)S_zKp+m—‘S“
s=—p

Consider first ¢ = —p — 1. The above estimate reads in this case wl_”;:ll < Kmpn2Rq2(m+1).

Since 2Rq¢? < 0.995 and pn < 1.005, we obtain wl_’z,;tll < K,, as needed.

Then we consider the case —p <1 < —1. For s <i we have K}, (5| = Kptm+s < Kppmi|-
Moreover we have Kp{rm,‘iH‘QRq‘l = Kp+m,m(1+q2(p+m+2))2Rq4 < %Kp
1 and ¢?(1 + 2Pty < 242 < 1. Hence (5.2) yields

. A A iy o i
wiyp—i-l < Kp+m—\i|(1 + %pnqﬂp-‘rz—km) + %pnq2(p+z+m) + %pnqﬂp |i|+m) 22:1_00(2R)8 z)
< Kpomjif(1+ Song® P 4 B, 2@l /(2R — 1))
< Kppmpif (14 §n@® P ) < Ky gi (14 PP ) = Ky i

where we used 2R — 1 > 5 and p, < %.

+m—|i| because 2Rq? <

Now we consider the case 0 < ¢ < p+ m. Let us observe that for any ¢ € N we have

(1+¢*)/2 < 1, hence 27 [T'Z((1 + ¢*") < 1. Then for |s| < i we can write K, [52°"" =
K2 TIA (144%) < Ky i2P T TG (14¢%') < Kpgn-s. On the other hand
for s < —i we clearly have K, ,,_|s) < Kpim—i (and 2°7" < 1). Using this, our estimate (5.2)
thus yields

T/fﬁ’pﬂ < Kp—‘rm—i(l + 3pnq2(p+i+m+2) + pn2Rq2(p+i+m+2) + 2F5pnq2(p7i+m+1) Zi;];p Rs—i)
< Kp+m—i(1 + qz(pizjrm) (%Pn + %Pn + %Pn/(R - 1)))
< Kp+m—i(1 + %pnq2(p+m_i)) < Kp+m—i(1 + QQ(p+m_i)) = Kpi1+m—i

where we used 2R¢®> < 1, ¢*> < %, then R—1> 2 and p, < %.
Finally when ¢ = p + m + 1 the first two terms in the estimate (5.2) vanish and we are left
with the sum which can be dealt with as before:

Lp+1 25 p+m —p—m—1
¢p+m+1 < B Pn Zs:—p(2R)S P Kp+m—|5|

© Kopn 321, Rrmm 1270 < R Kopn /(2R 1) < Ko,

IN

since R > 3.4 and p, < 1.1. This is the required estimate to conclude the proof of (Hp41).
We have now proved by induction that (H,) holds for all p € N. Moreover we have K, <
K :=limg . K, for all r € N, with K < 400 because ¢ < 1. Hence the lemma is proved. O

Notation 5.8. We consider the following non-orthogonal projections E,,, @y, defined as follows:
forallwe W,1, j €N

En(wij) =w;; ifi>mandj>m, 0 otherwise ;

Qm(wij) =w;; ifj>i=m, 0 otherwise.
Observe that if {w; j | w € W,i,j € N} is a Riesz basis, these projections extend to idempotents
in B(H®), and the range of E,, is the subspace V,,, from Notation 4.1.

Theorem 5.9. Assume that {w;; | w € W,4,j € N} is a Riesz basis and that N > 3. Then
there exist constants L, such that we have, for any p € N*, m € N and z € H®:

11 = Em)2ll3 < Lnp™ |23 + Linpll[xa, 21113-

Proof. Note that for N = 3 we have ¢~2 = 2(N? + NV N2 — 4 — 2) ~ 6.854, so that for N >3
we have ¢=2 > 6.85 and 0.995/(2¢%) > 3.4. As a result we can find a number R such as in the
hypothesis of Lemma 5.7. To start with, we deduce from that lemma estimates on various sums
of coefficients f and g. For each m we denote K,, the constant provided by the lemma.
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Recall that fl’p vanishes except for the following entries: fiﬁp i = gb - qﬁl’p with

—p < i < p+m, and the convention ¢, L _1 =0. Thus for fixed [ > m and p we have D \fl | <
9y ptm \¢i’p\. As a result Lemma 5.7 yields 37, ; ]fz | < 2K,,S with § = 37 4% ‘(QR) ,

i=—p
which is finite because 2R¢?> < 1 and ¢?/2R < ¢*/6 < 1 by choice of R. In the same way for
fixed i, j we have fi’f =O0unless i+ j >mand | > m, p € N satisfy l =7+ j — m — 2p. Thus
we obtain, putting r = p + m — 4, the same upper bound for the sum over [ and p:
L(i44)/2—m]
7 i m—2p. 4 i—m—2p.
D i e S s i ey A b i
pl>m p=0
L(G—4)/2]
_ Z ‘¢m+jfi72r,r+ifm . ¢m+j—i—2r,r+i—m‘< 2K, S
- r r—1 — me
r=m-—1i

On the other hand, recall that if gZ P =£ 0 then there exists 0 < r < p — 1 such that i + j =
m+ 1+ 2r 4+ 1, and then gw = ¢l "’ Hence for fixed I > m and p we have

r+m—1u°
l7
p
,L"j
i+j—m—2r—1,r
r—o|®

Similarly, for fixed 4, j, p we have >7,5 |gff ot
(i 47 —1)/2] —m), hence once again ) ;. |gf:§| < KpS.

Now we can proceed to the main part of the proof. We start by @, instead of 1 — E,,.
By decomposing H® into the pairwise orthogonal sub-bimodules H(w) we can assume that z
belongs to H(w) for some w — indeed Q,, and the commutator with y; commute with the
projections onto these submodules. Since (w; ;) is a Riesz basis we can replace ||Qm,z||3 with
dism 2 |z|13 with D |z 1% and ||[x1, 2]||3 with > |[x1, 2)i j|>. Then for any fixed p we
have the following estimates, using Proposition 5.5 and Cauchy—Schwartz:

Z‘Zm,” Z’Zfzgzl7]+zgzj X1, %

I>m I>m i,j
<2373 fira +2Z’Zgz]x1,

p—1 m+14+2r+1 p—1 400

sE% ST I, <30 D 16| < pKwS.
r= 1=0

r=0i=—o00

| where p = min(p — 1,

I>m i,j I>m i,j
<2 > If] IZ\f:f il 12300 lal] \Zlgum bl
>m 1,5 I>m 1,3
<AEmS ) If,’f 25l + 2K, SZ| X1: 2 ,Jr P
[>m,i,j I>m
<AK,S Y |fiPE +2pK3n522 X1, 2)i 51
I>myi,j i,J
Then we take the average of these inequalities over p =0,...,7 — 1:
4K,,S . 2K2 82
S ol < ETID DT [ g oy
I>m p<ril>m p<r  ij
8K2 52
s Z |2 + 1K S? Y xas 2l
1,J i3

It is then easy to upgrade this estimate from @Q,, to 1 — E,. First of all by symmetry we have
the same estimate for the sum of |z;,,|* over I > m, for fixed m. Then for fixed n we put

L,= Z:;:lo K2,, and by summing over 0 < m < n — 1 we obtain for all 7:

D Jzmal? S16L,S% N>z 7 4 200570 Y |, 2l

I<n or m<n ,J i,
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This gives the required estimate by the Riesz basis property. O

Proof of Theorem A. Take the constant g; provided by Theorem 3.10, and Ny € N, Ny > 3,
such that the associated constant g satisfies ¢o < g1. Then for N > Ny we have ¢ < ¢, so that
{w;; | we W,i,j € N} is a Riesz basis.

To prove the AOP, take elements z, € A+ N M such that |z.]| < 1 and ||[x1, z-][l2 —w 0. We
want to prove that (yz, | z,y) — 0 for any y € A+ N M. By Kaplansky’s density theorem and
linearity, we can assume that y € p, H° N M for some fixed n € N*, with ||y|| < 1. Now for any
m € N we can write

(e [ 200)] < NWEm(2r) | Em(zr)y)| + (1= Em)(zr)ll2(2r 2 + 1 Em(zr)||2)-

We apply our Theorem 4.9 to ¢ = E,,(2;), obtaining |(yEm(2) | Em(z:)y)| < Cq™™ || Em(2:)]|3
for m > 10n. The projections E,, are not orthogonal, but since (w; ), ; is a Riesz basis they
are bounded independently of m. Thus we get

((Wzr | 2ey)| < C¢" + Cl(1 = Em) (2|2

for some new constant C' independent of m and r. We now take ¢ > 0 and choose a fixed
m > 10n such that Cq®™ < €/2. Then we apply Theorem 5.9: for all p € N* and r we have

10 = Bu)(z) 3 < Lip ™ + Lunpl b, =13

We choose p such that L,,p~! < €2/8C?. Finally by assumption for w-almost all r we have
Ilx1, 2:]ll3 < €2/8C%L,,p. The above estimates then show that for the same r’s we have

|(yzr | zry)| < €, and this concludes the proof of the AOP. O
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