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Abstract. We show that the radial MASA in the orthogonal free quantum group algebra
L(FON ) is maximal amenable if N is large enough, using the Asymptotic Orthogonality Prop-
erty. This relies on a detailed study of the corresponding bimodule, for which we construct in
particular a quantum analogue of Rădulescu’s basis. As a byproduct we also obtain the value
of the Pukánszky invariant for this MASA.
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Introduction

The orthogonal free quantum groups FON , for N ∈ N∗, are discrete quantum groups which
were introduced by Wang [Wan95] via their universal C∗-algebra defined by generators and
relations:

C∗u(FON ) = Ao(N) = C∗(ui,j , 1 ≤ i, j ≤ N | u = ū, uu∗ = u∗u = 1).

Here u = (ui,j)i,j is the matrix of generators, u∗ is the usual adjoint in MN (C∗u(FON )), and
ū = (u∗i,j)i,j . There is a natural coproduct ∆ : C∗u(FON )→ C∗u(FON )⊗C∗u(FON ) which encodes

the quantum group structure, and which turns C∗u(FON ) into a Woronowicz C∗-algebra [Wor98].
In particular C∗u(FON ) is equipped with a canonical ∆-invariant tracial state h. In this article we
are interested in the von Neumann algebra L(FON ) = λ(C∗u(FON ))′′ ⊂ B(H) generated by the
image of C∗u(FON ) in the GNS representation λ associated with h. We still denote ui,j ∈ L(FON )
the images of the generators.

The von Neumann algebras L(FON ), and their unitary variants L(FUN ), can be seen as
quantum, or matricial, analogues of the free group factors L(FN ). More precisely if we denote
FON = (Z/2)∗N , with canonical generators ai, 1 ≤ i ≤ N , we have a surjective ∗-homomorphism
π : C∗u(FON ) → C∗u(FON ), ui,j 7→ δi,jai compatible with coproducts. It turns out that this
analogy is fruitful also at an analytical level: one can show that L(FON ) shares many properties
with L(FON ) and L(FN ), although the existence of π, which has a huge kernel, is useless to
prove such properties. For instance, L(FON ) is non amenable for N ≥ 3 [Ban97], and in fact it
is a full and prime II1 factor [VV07] without Cartan subalgebras [Iso15]. On the other hand it
is not isomorphic to a free group factor [BV18].

The II1 factor M = L(FON ) has a natural “radial” abelian subalgebra, A = χ′′1 ∩M where

χ1 = χ∗1 =
∑N

1 ui,i is the sum of the diagonal generators. It was shown, already in [Ban97],
that χ1/2 is a semicircular variable with respect to h, in particular ‖χ1‖ = 2 in L(FON ). Since
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ε(χ1) = N in C∗u(FON ), this implies the non-amenability of FON for N ≥ 3. The subalgebra
A ⊂ M is the quantum analogue of the radial subalgebra of L(FN ), generated by the sum

χ1 =
∑N

1 (ai+a∗i ) of the generators ai ∈ FN and their adjoints, which is known to be a maximal
abelian subalgebra (MASA) since [Pyt81].

The position of A in M was already investigated in [FV16], where it was shown, for N ≥ 3,
to be a strongly mixing MASA. Note that FON admits deformations FOQ, where Q ∈ MN (C)
is an invertible matrix such that QQ̄ = ±IN . When Q is not unitary, the corresponding von
Neumann algebra M = L(FOQ) is a type III factor, at least for small deformations [VV07]. One
can still consider the abelian subalgebra A = χ′′1 ∩M , but if Q is not unitary it is not maximal
abelian anymore, as shown in [KW22]. More precisely, in this case the inclusion A ⊂ M is
quasi-split in the sense of [DL84].

The aim of the present article is to pursue the study of [FV16] in the non-deformed case. Our
main result is the following theorem, proved at the end of Section 5. Here, and in the rest of the
article, we fix a free ultrafilter ω on N, but the result also holds for the Fréchet filter ω =∞.

Theorem A. There exists N0 ∈ N such that if N ≥ N0 the radial subalgebra A ⊂M = L(FON )
satisfies the Asymptotic Orthogonality Property: for every y ∈ A⊥ ∩M and for every bounded
sequence of elements zr ∈ A⊥ ∩M such that ∀a ∈ A ‖[a, zr]‖2 →ω 0, we have (yzr | zry)→ω 0.

The Asymptotic Orthogonality Property (AOP) originates from Popa’s seminal article [Pop83]
where it was established for A = a′′1 ⊂ L(FN ), the generator MASA in free group factors, and
proved to imply maximal amenability. It is often stated in a non-symmetric way, for scalar
products of the form (yzr | z′ry′), but the version above is sufficient for our purposes. We can
indeed formulate the following corollary, which is a quantum analogue of the result of [CFRW10]
about the radial MASA in free group factors.

Corollary B. There exists N0 ∈ N such that if N ≥ N0 the radial subalgebra A ⊂M = L(FON )
is maximal amenable: for any amenable subalgebra P ⊂M such that A ⊂ P , we have A = P .

Proof. Since A is already known to be a singular MASA by [FV16, Corollary 5.8], this follows
directly from [CFRW10, Corollary 2.3], whose proof uses only “symmetric” scalar products
(yzr | zry). �

The proof of Theorem A follows a strategy which can also be traced back to Popa’s work on
the generator MASA of free group factors. One can identify the following ingredients:

(1) a good description of the A,A-bimodule H = `2(FN ) ;
(2) a decreasing sequence of subspaces Vm ⊂ H such that, for y ∈ A⊥ ∩M fixed and m big

enough, yVm⊥Vmy ;
(3) the fact that elements z ∈ A⊥ ∩M almost commuting to A are almost supported in Vm.

In the classical case the arguments for each of the above steps rely on the combinatorics of
reduced words in the free group. In the quantum case the techniques are completely different
and consist in performing analysis in the Temperley-Lieb category, which is naturally associated
with FON as we recall in the preliminary Section 1. We give below more details about the
strategy used for each of the three steps, in the classical and quantum cases, and present the
organization of the article.

The more precise goal for (1) is to exhibit an orthonormal basis W of the A,A-bimodule
A⊥ ∩ H with good combinatorial properties, which will allow to carry out computations. In
the case of the generator MASA a′′1 ⊂ L(FN ), this basis is just given by the set of reduced

words in FN which do not start nor end with a1 nor a−1
1 . In the case of the radial MASA in

L(FN ), a convenient basis was constructed by Rădulescu [Răd91] to show that the radial MASA
is singular with Pukánszky invariant {∞}.

In Section 2 we construct an analogue W =
⊔
k≥1Wk of the Rădulescu basis for our free

quantum groups. Surprisingly one has to take into account additional symmetries of H given
by the rotation maps ρk which already played a (minor) role in [FV16]. Using this construction
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and a result from [FV16], we can already deduce (Corollary 2.13) that the Pukánszky invariant
of the radial MASA in L(FON ) is {∞}, a result that was missing in [FV16].

From x ∈ W one can generate a natural C-linear basis (xi,j)i,j∈N of the cyclic submodule
AxA. In Rădulescu’s case, (xi,j) is orthogonal as soon as x ∈ Wk with k ≥ 2, and for k = 1 it
is nevertheless a Riesz basis. In our case, (xi,j) is never orthogonal and we have to show that
it is a Riesz basis, uniformly over x ∈ W . This is accomplished in Section 3, which is the most
challenging technically, and we manage to reach this conclusion only if N is large enough.

The core of the strategy then lies in ingredient (2). In the case of the generator MASA in the
free group factor L(FN ), Vm is simply the subspace of H generated by the reduced words of FN
that begin and end with a “large” power ak1 of the generator, |k| ≥ m, without being themselves
a power of a1. We have then clearly Vmy⊥yVm if y ∈ A⊥ ∩M is supported on reduced words of
length at most m.

In the case of the radial MASA in L(FN ), Vm is defined in terms of the Rădulescu basis as
the subspace generated by the elements xi,j , x ∈ W , i, j ≥ m. We adopt the same definition
in the quantum case, using our analogue of the Rădulescu basis, and we show in Section 4 that
the orthogonality property Vmy⊥yVm holds in an approximate sense as m→∞. Note that we
use one of the two main technical tools from [FV16], in an improved version (Lemma 1.6).

In the case of the classical generator MASA, the step (3) follows by observing that if z ∈M
almost commutes to the powers ak1 of the generator, then its components supported on a subset

S ⊂ FN and on the subset ak1Sa
−k
1 have approximately the same norm. If S = Sm is the set

of words starting with a power at most m (in absolute value) of a1, for many values of k the

subsets ak1Sma
−k
1 will be pairwise disjoint, so that the norms of the corresponding components

of z will be small. One can then show that z is “almost” contained in Vm, in a quantitative way.
In our case, we similarly relate various components of z using the commutator [χ1, z], see

Proposition 5.5 in Section 5. This requires to determine the structure constants for the left and
right action of χ1 on the basis (xi,j) for a given x ∈ W . Then the components of z that we are
able to relate in this way are not as simply “localized” as in the classical cases, and moreover the
coefficients in these relations are only recursively specified and require a quite delicate analysis
to reach the conclusion. For all this it is naturally necessary to know that the families (xi,j) are
Riesz bases, uniformly with respect to x ∈W .

Assembling the results obtained in Sections 4 and 5 it is then easy to prove Theorem A.

1. Preliminaries

We denote by N the set of non-negative integers. Unless otherwise stated, all indices used in
the statements belong to N.

In this article, a discrete quantum group � is given by a Woronowicz C∗-algebra C∗(�)
[Wor98], i.e. a unital C∗-algebra equipped with a unital ∗-homomorphism ∆ : C∗(�)→ C∗(�)⊗
C∗(�) satisfying the following two axioms: i) (∆ ⊗ id)∆ = (id ⊗ ∆)∆ (co-associativity); ii)
∆(C∗(�))(1 ⊗ C∗(�)) and ∆(C∗(�))(C∗(�) ⊗ 1) span dense subspaces of C∗(�) ⊗ C∗(�) (bi-
cancellation). This encompasses classical discrete groups, as well as duals of classical compacts
groups G, given by C∗(�) = C(G).

In this setting, the existence and uniqueness of a bi-invariant state h ∈ C∗(�)∗, i.e. satisfying
the relations (h ⊗ id)∆ = 1h = (id ⊗ h)∆, were proved by Woronowicz [Wor98] when C∗(�)
is separable, and by Van Daele [VD95] in general. We can consider the GNS representation
λ associated with h and we shall mainly work with the corresponding von Neumann algebra
M = L(�) = λ(C∗(�))′′ represented on the Hilbert space H = `2(�). We still denote h the
factorization of the invariant state to M . As the notation suggests, in the classical case L(Γ)
is the usual group von Neumann algebra with its canonical trace, whereas for the dual of a
compact group G we have L(�) = L∞(G) with the Haar integral.

A corepresentation of � is an element u ∈M⊗̄B(Hu) such that u13u23 = (∆⊗ id)(u). We will
work exclusively with unitary and finite-dimensional corepresentations. We denote Hom(u, v) ⊂
B(Hu, Hv) the space of intertwiners from u to v, i.e. maps T such that (1⊗ T )u = v(1⊗ T ). A
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corepresentation u is irreducible if Hom(u, u) = Cid; two corepresentations u, v are equivalent
if Hom(u, v) contains a bijection. The tensor product of u and v is u ⊗ v := u12v13, with
Hu⊗v = Hu ⊗Hv. We have defined in this way a tensor C∗-category denoted Corep(�) with a
fiber functor to Hilbert spaces.

Let u ∈ M ⊗ B(Hu) be a corepresentation of �. For ζ, ξ ∈ Hu we can consider the cor-
responding coefficient uζ,ξ = (id ⊗ ζ∗)u(id ⊗ ξ) = (id ⊗ Tr)(u(1 ⊗ ξζ∗)) ∈ M . More generally
for X ∈ B(Hu) we denote u(X) = (id ⊗ Tr)(u(1 ⊗X)) — although it would perhaps be more
natural to denote this element u(ϕ) where ϕ = Tr( ·X) ∈ B(Hu)∗.

In the present article we will work only with unimodular discrete quantum groups, equiva-
lently, the canonical state h will be a trace. In this case the Peter-Weyl-Woronowicz orthogo-
nality relations read, for u irreducible:

(1.1) (u(X) | u(Y )) = (dimu)−1(X | Y ),

where we use on the left the scalar product associated with h, (x | y) = h(x∗y), and on the
right the Hilbert-Schmidt scalar product (X | Y ) = Tr(X∗Y ). On the other hand we have
(u(X) | v(Y )) = 0 if u, v are irreducible and not equivalent.

The product in M can be computed according to the evident formula u(X)v(Y ) = (u⊗ v)
(X ⊗ Y ). We have moreover u(TX) = v(XT ) for X ∈ B(Hu, Hv) and T ∈ Hom(v, u). As a
result, if we choose intertwiners Ti ∈ Hom(wi, u ⊗ v) such that T ∗i Ti = id and

∑
i TiT

∗
i = id,

we obtain the formula u(X)v(Y ) =
∑

iwi(T
∗
i (X ⊗ Y )Ti), which we can use to compute the

product of coefficients of irreducible corepresentations as a linear combination of coefficients of
irreducible corepresentations.

In this article we consider the orthogonal free quantum groups � = FON defined in the
Introduction, and assume N ≥ 3. Associated to N is the parameter q ∈ ]0, 1[ such that q+q−1 =
N , which plays an important role in the computations. We have q → 0 as N → ∞. Banica
[Ban96] showed that the C∗-tensor category Corep(FON ) is equivalent, as an abstract tensor
category, to the Temperley-Lieb category TLδ at parameter δ = N , and that FON is realized via
Tannaka-Krein duality by the fiber functor F : TLN → Hilb which sends the generating object
to H1 := CN , with corepresentation u = (ui,j)i,j given by the canonical generators of L(FON ),
and the generating morphism to F (∩) = t :=

∑
i ei ⊗ ei ∈ H1 ⊗H1, where (ei)i is the canonical

basis of CN . See [NT13, Section 2.5] for details about this category.

This means that we have a pictorial representation of elements A ∈ Hom(H⊗k1 , H⊗l1 ). More
precisely, denote NC2(k, l) the set of non-crossing pair partitions of k + l points. For each

partition π ∈ NC2(k, l) there is a morphism Tπ ∈ Hom(H⊗k1 , H⊗l1 ) whose matrix coefficients
(ei1 ⊗ · · · ⊗ eil | Tπ(ej1 ⊗ · · · ⊗ ejk)) are equal to 1 if “the indices is, jt agree in each block of
π”, and to 0 otherwise. Then, for N ≥ 3 the maps Tπ with π ∈ NC2(k, l) form a linear basis

of Hom(H⊗k1 , H⊗l1 ). Elements π ∈ NC2(k, l), and the corresponding morphisms Tπ, are usually
depicted inside a rectangle with k numbered points on the upper edge and l numbered points
on the bottom edge by drawing non-crossing strings joining the two elements in each block of π.

More generally, the collection of spaces B(H⊗k1 , H⊗l1 ) is an (even) planar algebra, meaning

that linear maps obtained by composing and tensoring given maps Xi ∈ B(H⊗ki1 , H⊗li1 ) with
maps Tπ can be represented by means of a rectangular Temperley-Lieb diagram as above with
p internal boxes representing the maps Xi. For instance, if X, Y ∈ B(H⊗2

1 ) we have, drawing
dashed internal and external boxes, and solid Temperley-Lieb strings:

(t∗ ⊗ t∗ ⊗ id)(id⊗X ⊗ Y )(t⊗ t⊗ id) =

����
�
�
X Y ∈ B(H1).

The irreducible objects of the Temperley-Lieb category, and hence the irreducible corepre-
sentations of FON , can be labeled by integers k ∈ N up to equivalence, in such a way that
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u0 = 1 ⊗ idC is the trivial corepresentation, u1 = u is the generating object, and the following
fusion rules are satisfied:

uk ⊗ ul ' u|k−l| ⊕ u|k−l|+2 ⊕ · · · ⊕ uk+l.

We denote Hk the Hilbert space associated with uk and dk = dimHk. We write Trk, trk
the standard and normalized traces on B(Hk). Note that d0 = 1 and d1 = N . The remaining
dimensions can be computed using the fusion rules and are given by q-numbers:

(1.2) dk = [k + 1]q :=
qk+1 − q−(k+1)

q − q−1
.

The irreducible characters are χk = (id⊗ Trk)(uk) ∈M . It follows from the fusion rules and
the Peter-Weyl-Woronowicz formula that they form an orthonormal basis of the ∗-subalgebra A
generated by χ1 =

∑
ui,i, which is weakly-∗ dense in A = χ′′1.

According to the fusion rules, uk appears with multiplicity 1 as a subobject of u⊗k1 . We agree

to take for Hk the corresponding subspace of H⊗k1 , and we denote Pk ∈ B(H⊗k1 ) the orthogonal
projection onto Hk: this is the kth Jones-Wenzl projection. We have Pk(Pa ⊗ Pb) = Pk, i.e. Hk

is a subspace of Ha ⊗Hb, as soon as k = a + b. We shall use the notation idk for the identity
map both on Hk or on H⊗k1 ; the space it is acting on should be clear from the context. We

will also use the embeddings Hk ⊂ Ha ⊗ Hb ⊂ H⊗k1 , when a + b = k, to identify an element

X ∈ B(Hk) with the corresponding elements of B(Ha ⊗ Hb) and B(H⊗k1 ). This is especially
used to take partial traces of X such as (Tra⊗id)(X) or (Tr1⊗id)(X), where Trk always stands
for the trace of B(Hk) as indicated above.

As another consequence of the fusion rules, there is a unique line of fixed vectors in Hk ⊗Hk.
We already know the generator t = t1 of Hom(H0, H1 ⊗H1). This map satisfies the conjugate
equations (id1 ⊗ t∗)(t⊗ id1) = id1 = (t∗ ⊗ id1)(id1 ⊗ t). We slightly abuse notation by defining

recursively t11 = t1, tk1 = (id⊗k−1
1 ⊗t1⊗id⊗k−1

1 )tk−1
1 ∈ Hom(H0, H

⊗2k
1 ), so that Hom(H0, Hk⊗Hk)

is generated by tk := (Pk ⊗ Pk)t
k
1 = (idk ⊗ Pk)t

k
1 = (Pk ⊗ idk)t

k
1. Note that we have then

t∗k(X ⊗ idk)tk = Trk(X) for X ∈ B(Hk), in particular ‖tk‖ =
√
dk.

Using the intertwiner t one can also investigate more precisely the position of Hn in Hn−1⊗H1,
and this gives rise for instance to the Wenzl recursion relation [Wen87, Prop. 1], see also [FK97,
Equation (3.8)] and [VV07, Notation 7.7]:

(1.3) Pn = (Pn−1 ⊗ id1) +

n−1∑
l=1

(−1)n−l
dl−1

dn−1

(
id
⊗(l−1)
1 ⊗ t⊗ id

⊗(n−l−1)
1 ⊗ t∗

)
(Pn−1 ⊗ id1).

One can go further and define the basic intertwiner V k,l
m = (Pk ⊗ Pl)(idk−a ⊗ ta ⊗ idl−a)Pm

which spans Hom(Hm, Hk ⊗ Hl), where m = k + l − 2a. It is not isometric but its norm can

be computed explicitly, see [Ver07, Lemma 4.8]. Following [FV16], we denote κk,lm = ‖V k,l
m ‖−1.

This yields the following explicit formula to compute the product of coefficients of irreducible
corepresentations:

(1.4) uk(X)ul(Y ) =

min(k,l)∑
a=0

(
κk,lm

)2
um

(
V k,l∗
m (X ⊗ Y )V k,l

m

)
,

where we still agree to write m = k + l − 2a. This motivates the following notation (which is
indeed connected with the convolution product in cc(FON ) up to constants).

Notation 1.1. For X ∈ B(Hk), Y ∈ B(Hl), m = k + l − 2a we consider the following element
of B(Hm):

X ∗m Y = V k,l∗
m (X ⊗ Y )V k,l

m = Pm(idk−a ⊗ t∗a ⊗ idl−a)(X ⊗ Y )(idk−a ⊗ ta ⊗ idl−a)Pm.

One can perform analysis in the tensor category Corep(FON ). Recall for instance Lemma 1.3
from [VV07] below, with some more precise information about constants.

Lemma 1.2. For any k ∈ N we have q−k ≤ dk ≤ q−k/(1− q2).
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Proof. Clear from (1.2). �

Lemma 1.3. Fix q0 ∈ ]0, 1[ and assume that q ∈ ]0, q0]. Then there exists a constant C
depending only on q0 such that ‖(Pa+b ⊗ idc)(ida ⊗ Pb+c)− Pa+b+c‖ ≤ Cqb for all a, b, c ∈ N.

Proof. This is [VV07, Lemma A.4], we only have to check that the constant C remains bounded
as q → 0. The proof of [VV07] explicitly gives the following upper bound:

‖(Pa+b ⊗ idc)(ida ⊗ Pb+c)− Pa+b+c‖ ≤ qb
( ∞∏

0

(1 +Dqk)
)( ∞∑

0

Cqk
)
,

where C and D a priori depend on q. Let us show that one can choose C and D uniformly over
]0, q0]. Using Lemma 1.2 we have

q−b−c
[2]q[a]q

[a+ b+ c+ 1]q
≤ q−b−c q−1q−a+1

q−a−b−c(1− q2)2
≤ 1

(1− q2
0)2

.

Similarly:

q−b−c
∣∣∣ [2]q[a+ b]q
[a+ b+ c+ 1]q

− [2]q[b]q
[b+ c+ 1]q

∣∣∣ = q−b−c
[2]q[a]q[c+ 1]q

[a+ b+ c+ 1]q[b+ c+ 1]q

≤ q−b−c q−1q−a+1q−c

q−a−b−cq−b−c(1− q2)3
≤ qb0

(1− q2
0)3
≤ 1

(1− q2
0)3

.

In [VV07], the only constraint on C is to be an upper bound for these two quantities, hence it
can indeed be chosen to depend only on q0. On the other hand, D should be an upper bound
for

q−c
[2]q[b]q

[b+ c+ 1]q
≤ q−c q−1q−b+1

q−b−c(1− q2)2
≤ 1

(1− q2
0)2

,

hence it can also be chosen to depend only on q0. �

We also have estimates on the constants κ, already proved in [Ver07]. The formulae for κk,lm
show that, again, the constant C is uniform for q varying in an interval ]0, q0] with q0 < 1, but
we will not need this fact.

Lemma 1.4. There exists a constant C, depending only on q, such that we have 1 ≤
√
daκ

k,l
m ≤ C

for all k, l and m = k + l − 2a.

Proof. See the proof of [Ver07, Lemma 4.8], [BVY21, p. 1583], [BC18, Equation (6) and Propo-
sition 3.1]. �

The following estimate appeared also in connection with Property RD [Ver07]. Recall that ‖ · ‖2
denotes the Hilbert-Schmidt norm on matrix spaces.

Lemma 1.5. Consider integers such that m = k + l − 2a. Then for any X ∈ B(H⊗k1 ),

Y ∈ B(H⊗l1 ) we have ‖(idk−a ⊗ t∗a ⊗ idl−a)(X ⊗ Y )(idk−a ⊗ ta ⊗ idl−a)‖2 ≤ ‖X‖2‖Y ‖2 and
‖(id⊗ Tra)(X)‖2 ≤

√
da‖X‖2.

Proof. The proof of [Ver07, Theorem 4.9] applies, although it was there used only forX ∈ B(Hk),
Y ∈ B(Hl). Let us repeat it. Consider an orthonormal basis (fi)i of Ha, then the basis (f̄i)i
defined by putting ta =

∑
i fi⊗ f̄i is orthonormal as well: indeed its Gram matrix is Woronowicz

modular matrix Fa, which is equal to the identity in our unimodular case. Put EI = fif
∗
j and

ĒI = f̄if̄
∗
j ∈ B(Ha) for I = (i, j), these are orthonormal bases of B(Ha) for the Hilbert-Schmidt

structure and we have t∗a(EI⊗ĒJ)ta = δI,J . Decompose (idk−a⊗Pa)X(idk−a⊗Pa) =
∑
XI⊗EI

with XI ∈ B(H⊗k−a1 ) and similarly (Pa ⊗ idl−a)Y (Pa ⊗ idl−a) =
∑
ĒJ ⊗ YJ . We have then∑

‖XI‖22 = ‖(idk−a ⊗ Pa)X(idk−a ⊗ Pa)‖22 ≤ ‖X‖22 and similarly
∑
‖YJ‖22 ≤ ‖Y ‖22. Finally we

have by the triangle inequality and Cauchy-Schwarz :

‖(id⊗ t∗a ⊗ id)(X ⊗ Y )(id⊗ ta ⊗ id)‖22 = ‖
∑

I,J t
∗
a(EI ⊗ ĒJ)ta × (XI ⊗ YJ)‖22

≤
(∑

I‖XI‖2‖YI‖2
)2

≤ (
∑

I‖XI‖22)(
∑

I‖YI‖
2
2) ≤ ‖X‖22‖Y ‖22.
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The second inequality of this lemma follows by taking l = a and Y = ida, but can also
be proved more directly by noticing that in the canonical isometric isomorphism B(K ⊗ L) '
K⊗L⊗L̄⊗K̄, the partial trace id⊗TrL corresponds to the map id⊗t∗L⊗id, where tL : C→ L⊗L̄
is the canonical duality vector whose norm is

√
dimL. �

We will use again one of the two main estimates from [FV16] about Corep(FON ). For a, b,
c ∈ N consider Πa,b,c = (ida ⊗ trb⊗idc)(Pa+b+c) ∈ B(Ha ⊗ Hc) — this time the analysis deals
with Corep(FON ) together with its canonical fiber functor. Proposition 3.2 of [FV16] shows
that Πa,b,c is almost scalar as b → ∞. We give below an improvement of the corresponding
constants.

Lemma 1.6. For every q0 ∈ ]0, 1[ there exist constants C > 0, α ∈ ]0, 1[ such that, for all a, b,

c ∈ N and q ∈ ]0, q0] we have ‖Πa,b,c − λ(ida ⊗ idc)‖ ≤ Cqbαbc for some scalar λ ∈ C.

Proof. Let us note first that in the case c = 0 the map dbΠa,b,c = (ida⊗ t∗b)(Pa+b⊗ idb)(ida⊗ tb)
is an intertwiner of the irreducible space Ha, hence it is a multiple of the identity. On the
other hand, for c ≥ 1 Proposition 3.2 of [FV16] uses the scalar λ = λa,c explicitly given by
λa,c = q−a−c/dadc. Consider Π′a,b,c = dbΠa,b,c − dbλa,c(ida ⊗ idc). A direct computation shows
that

Tr(Π′a,b,c) = da+b+c − q−a−cdb = qb+2 q
−a−c − qa+c

1− q2

≤ 1

1− q2

√
da+cdadc =

√
da+c

1− q2
(Tr ida ⊗ idc)

1/2.

Now, [FV16] shows the existence of constants Da,c such that |Tr(Π′a,b,cf)| ≤ Da,c(Tr f∗f)1/2 for

f ∈ B(Ha)⊗B(Hc) with Tr(f) = 0. This implies

|Tr(Π′a,b,cf)| ≤ (da+c/(1− q2)2 +D2
a,c)

1/2(Tr f∗f)1/2

for any f ∈ B(Ha)⊗ B(Hc), hence ‖Πa,b,c − λa,cid‖2 ≤ (da+c/(1− q2)2 +D2
a,c)

1/2d−1
b . Here we

use the Hilbert-Schmidt norm in B(Ha ⊗Hc), which is bigger than the operator norm.
Moreover, it is explicitly stated in the proof of [FV16, Prop. 3.2] that one can take the

constants Da,c defined by induction over c as follows: Da,0 = 0 and, for c ≥ 1:

Da,c = Kc max(d
1/2
1 Da,c−1 + d

3/2
1 da−1, d

1/2
a+c),

where 1 ≤ Kc = 1/(1 − qc) ≤ K := 1/(1 − q). In particular da+c ≤ D2
a,c if c ≥ 1. Putting

C1 =
√

2/(1−q2
0) we have thus, for all a, b, c ∈ N, the existence of λ ∈ C such that ‖Πa,b,c−λ id‖ ≤

C1Da,cq
b.

One can then show by induction that the constantsDa,c satisfy the estimateDa,c ≤ (2NK)a+c,

where N = d1 = q + q−1. Indeed Kcd
1/2
a+c ≤ KN (a+c)/2 ≤ (2KN)a+c, and for c ∈ N∗ we have by

induction

Kc(d
1/2
1 Da,c−1 + d

3/2
1 da−1) ≤ KN1/2(2NK)a+c−1 +KN3/2Na−1 ≤ (2NK)a+c.

Of course this estimate is quite bad, but one can improve it using [VV07, Lemma A.4].
More precisely, let α > 0 be such that (2KN)2αq = qα. Take a, c ≥ αb. Denote C0 the

constant given by Lemma 1.3. Then we have

Pa+b+c ' (Pa ⊗ idb ⊗ Pc)(ida−bαbc ⊗ Pb+2bαbc ⊗ idc−bαbc)

up to 2C0q
bαbc in operator norm. Applying id ⊗ trb⊗id, which is contracting, to this estimate

we obtain

Πa,b,c ' (Pa ⊗ Pc)(ida−bαbc ⊗Πbαbc,b,bαbc ⊗ idc−bαbc) ' λ(ida ⊗ idc)

up to 2C0q
bαbc+C1Dbαbc,bαbcq

b ≤ 2C0q
bαbc+C1(2NK)2bαbcqb in operator norm, for some λ ∈ C.

Since q ≤ 1 ≤ 2NK we have moreover (2NK)2bαbcqb ≤ (2NK)2αbqb = qαb ≤ qbαbc by definition

of α. This yields ‖Πa,b,c−λ(ida⊗ idc)‖ ≤ (2C0 +C1)qbαbc. This estimate is also valid if a, c < αb
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because in this case Da,cq
b ≤ (2KN)2αbqb = qαb. It holds also in the remaining cases by using

Lemma 1.3 only on one side.
Finally we have shown the existence of D0 > 0, depending only on q0, and α > 0 such that

for all a, b, c there exists a constant λ such that ‖Πa,b,c − λ(ida ⊗ idc)‖ ≤ D0q
bαbc. One should

be careful that α depends on q. In fact it can be computed explicitly from the defining relation
(2KN)2αq = qα, with K = 1/(1− q) and N = q + q−1: one gets

α =
1

3

[
1− 2 ln 2

3 ln q
− 2

3 ln q
ln

(
1 + q2

1− q

)]−1

.

From this it follows that α is decreasing from 1/3 to 0 as q varies from 0 to 1, and the result
follows. �

Remark 1.7. For instance one can take α = 1/4 for q0 ≈ 0.15 (or N0 = 7). We also have

qα ∼ Lq1/3 as q → 0, where L = exp(2 ln(2)/9).

We will need in the next section one last tool about the representation category of FON . The
Wenzl recursion relation (1.3), applied twice, yields the following bilateral version.

Lemma 1.8. For n ≥ 4 we have the bilateral Wenzl recursion relation:

Pn = (id1 ⊗ Pn−2 ⊗ id1)+

− dn−2

dn−1
(id1 ⊗ Pn−2 ⊗ id1)(tt∗ ⊗ id

⊗(n−2)
1 )(id1 ⊗ Pn−2 ⊗ id1)

− dn−2

dn−1
(id1 ⊗ Pn−2 ⊗ id1)(id

⊗(n−2)
1 ⊗ tt∗)(id1 ⊗ Pn−2 ⊗ id1)

+
(−1)n−1

dn−1
(id1 ⊗ Pn−2 ⊗ id1)(t⊗ id

⊗(n−2)
1 ⊗ t∗)(id1 ⊗ Pn−2 ⊗ id1)

+
(−1)n−1

dn−1
(id1 ⊗ Pn−2 ⊗ id1)(t∗ ⊗ id

⊗(n−2)
1 ⊗ t)(id1 ⊗ Pn−2 ⊗ id1)

+
d1 + dn−3dn−2

dn−1dn−2
(id1 ⊗ Pn−2 ⊗ id1)(tt∗ ⊗ id

⊗(n−4)
1 ⊗ tt∗)(id1 ⊗ Pn−2 ⊗ id1).

For n = 3 the formula still holds, without the last term.

Proof. We assume for this proof that n ≥ 4. A similar calculation gives the result for n = 3.
We first multiply the relation (1.3) on the left by (id1 ⊗ Pn−2 ⊗ id1). All terms except l = 1

and l = n− 1 vanish because they involve Pn−2(idi ⊗ t⊗ idj), and we are left with :

Pn = (Pn−1 ⊗ id1) +
(−1)n−1

dn−1
(id1 ⊗ Pn−2 ⊗ id1)(t⊗ id

⊗(n−2)
1 ⊗ t∗)(Pn−1 ⊗ id1)

− dn−2

dn−1
(id1 ⊗ Pn−2 ⊗ id1)(id

⊗(n−2)
1 ⊗ tt∗)(Pn−1 ⊗ id1).

Let us denote A, B, C the three terms on the right-hand side above, without the numeric
coefficients. We apply the left version Wenzl’s recursion to the projections Pn−1:

Pn−1 = (id1 ⊗ Pn−2) +
n−2∑
k=1

(−1)n−1−k dk−1

dn−2

(
t∗ ⊗ id

⊗(n−k−2)
1 ⊗ t⊗ id

⊗(k−1)
1

)
(id1 ⊗ Pn−2).

Multiplying on the left by (id1 ⊗ Pn−2) this yields

A = (id1 ⊗ Pn−2 ⊗ id1)− dn−3

dn−2
(id1 ⊗ Pn−2 ⊗ id1)(tt∗ ⊗ id

⊗(n−2)
1 )(id1 ⊗ Pn−2 ⊗ id1).
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We proceed similarly with B: only the terms k = 1, k = 2 have a non-vanishing contribution
and we obtain, applying the conjugate equation:

B = (id1 ⊗ Pn−2 ⊗ id1)(t⊗ id
⊗(n−2)
1 ⊗ t∗)(id1 ⊗ Pn−2 ⊗ id1)

+
(−1)n

dn−2
(id1 ⊗ Pn−2 ⊗ id1)(tt∗ ⊗ id

⊗(n−2)
1 )(id1 ⊗ Pn−2 ⊗ id1)

+
(−1)n−1d1

dn−2
(id1 ⊗ Pn−2 ⊗ id1)(tt∗ ⊗ id

⊗(n−4)
1 ⊗ tt∗)(id1 ⊗ Pn−2 ⊗ id1).

Finally for C only the terms k = 1, k = n− 2 survive, yielding:

C = (id1 ⊗ Pn−2 ⊗ id1)(id
⊗(n−2)
1 ⊗ tt∗)(id1 ⊗ Pn−2 ⊗ id1)

+
(−1)n

dn−2
(id1 ⊗ Pn−2 ⊗ id1)(t∗ ⊗ id

⊗(n−2)
1 ⊗ t)(id1 ⊗ Pn−2 ⊗ id1)

− dn−3

dn−2
(id1 ⊗ Pn−2 ⊗ id1)(tt∗ ⊗ id

⊗(n−4)
1 ⊗ tt∗)(id1 ⊗ Pn−2 ⊗ id1).

The result follows by gathering A, B and C with their coefficients and using the relation
dn−3dn−1 + 1 = d2

n−2. �

2. Decomposition of the Bimodule

In this section we consider the GNS space H = `2(�) of M = L(�) with respect to the Haar
trace h. We identify M with a dense subspace of H. We shall study H as an A,A-bimodule for
A = χ′′1 ∩M . We will more specifically consider the orthogonal H◦ ⊂ H of the trivial bimodule
A ⊂ H, and we shall decompose it into simpler, pairwise orthogonal submodules generated
by natural elements, see Proposition 2.12. Moreover we will exhibit for each of these cyclic
submodules AxA a linear basis (xi,j)i,j , see Proposition 2.9 and Corollary 2.14. Recall that A
is the unital canonical dense sub-∗-algebra of A generated by χ1.

We denote pk ∈ B(H) the orthogonal projection onto the subspace pkH = uk(B(Hk)) spanned
by coefficients of uk. Note that pk belongs in fact to the dual algebra `∞(�), and that the

projection Pk ∈ B(H⊗k1 ) introduced in the preceding section is the image of pk under the

natural representation of `∞(�) on the corepresentation space H⊗k1 .
The space H◦ is spanned by its subspaces pkH

◦ and we have pkH
◦ = H◦∩pkH = uk(B(Hk)

◦)
where B(Hk)

◦ = {X ∈ B(Hk) | Tr(X) = 0}. In the case of the classical generator MASA
a′′1 ⊂ L(FN ), the subspace analogous to pkH

◦ is spanned by reduced words of length k, different

from a±k1 . We introduce below a subspace H◦◦ ⊂ H◦ which is the quantum replacement for the
set of words g ∈ FN that do not start nor end with a1.

Notation 2.1. For n ≥ 1 we denote

B(Hn)◦◦ = {X ∈ B(Hn) | (Tr1⊗id)(X) = 0 = (id⊗ Tr1)(X)}.
We denote H◦◦ the closed linear span of the subspaces un(B(Hn)◦◦) in H◦.

Remark 2.2. It is well-known that Hn ⊂ H⊗n1 is the subspace of vectors ζ ∈ H⊗n1 such that
(idi⊗t∗⊗idn−i−2)(ζ) = 0, for all i = 0, . . . , n−2. This follows by induction from the fact that Hn

is the kernel of t∗⊗ idn−2 : H1⊗Hn−1 → Hn−2, according to the fusion rules. As a consequence,
an element X ∈ B(H⊗n1 ) arises from an element of B(Hn) iff we have (idi⊗ t∗⊗ idn−i−2)X = 0
and X(idi⊗ t⊗ idn−i−2) = 0 for all i. Graphically this means we have X ∈ B(Hn) iff we obtain
0 by applying to X any planar tangle which connects two consecutive points on the lower or
upper edge of the internal box corresponding to X:

ppp pppppp� � pppppp ppp
��

X X= 0 =

Since (Tr1⊗id)(X) ∈ B(H⊗n−1
1 ) (resp (id⊗Tr1)(X)) is obtained from X by applying the planar

tangle connecting the upper left and lower left (resp. upper right and lower right) points of the
internal box, we conclude that X ∈ B(H⊗n1 ) belongs to B(Hn)◦◦ iff we obtain 0 by applying to
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X any planar tangle which connects any two consecutive points of the internal box corresponding
to X. Diagrammatically this is represented by the additional constraints:ppp ppp

��
� � ppp ppp

��
� �X X= 0 =

Now we compute the dimension of B(Hn)◦◦, see Proposition 2.5. This will be useful to prove
that the families (xi,j)i,j are linearly independent at Corollary 2.14. The latter also follows
from the stronger results of Section 3, but there we will have to assume that N is large enough
and the proofs are much more involved. Note however that the proof below is not optimal
either, in the sense that the underlying technical result established at Lemma 2.4 does not hold
if q + q−1 ∈ ]2, 2.41[, which can occur for the non unimodular groups FOQ. We believe that
Lemma 2.3 and Proposition 2.5 hold true for any group FOQ with q + q−1 > 2, i.e. excluding
the duals of SU(2) and SU−1(2).

In the statement below we use the leg numbering notation: t∗1,n =
∑

i e
∗
i ⊗ id1⊗· · ·⊗ id1⊗ e∗i ,

for n ≥ 2. This application maps Hn to Hn−2, as can be seen when n ≥ 4 by checking the
condition (idi ⊗ t∗ ⊗ idn−i−4)t∗1,n(ζ) = 0, for any ζ ∈ Hn.

Lemma 2.3. Assume N ≥ 3. For n ≥ 3 the map t∗1,n : Hn → Hn−2 is surjective.

Proof. We apply t∗1,n · t1,n to the bilateral Wenzl recursion formula from Lemma 1.8. Using the

conjugate equations we have in B(H
⊗(n−2)
1 ):

t∗1,n(tt∗ ⊗ id
⊗(n−2)
1 )t1,n = id

⊗(n−2)
1 = t∗1,n(id

⊗(n−2)
1 ⊗ tt∗)t1,n,

t∗1,n(t⊗ id
⊗(n−2)
1 ⊗ t∗)t1,n = C−2

n−2,

t∗1,n(t∗ ⊗ id
⊗(n−2)
1 ⊗ t)t1,n = C2

n−2,

t∗1,n(tt∗ ⊗ id
⊗(n−4)
1 ⊗ tt∗)t1,n = t1,n−2t

∗
1,n−2 (n ≥ 4),

where Cn−2 : ξ ⊗ ζ 7→ ζ ⊗ ξ for ξ ∈ H1, ζ ∈ H⊗(n−3)
1 . Thus for n ≥ 4 we obtain

t∗1,nPnt1,n =
(
d1 − 2dn−2

dn−1

)
Pn−2+

+
(−1)n−1

dn−1
Pn−2(C2

n−2 + C−2
n−2)Pn−2 +

d1 + dn−3dn−2

dn−1dn−2
Pn−2t1,n−2t

∗
1,n−2Pn−2.

This formula also holds for n = 3, without the last term. Observe moreover that ‖Pn−2C
±2
n−2Pn−2‖

≤ 1 and ‖Pn−2t1,n−2t
∗
1,n−2Pn−2‖ ≤ d1 by composition. Now, the inequality established in the

next Lemma shows that t∗1,nPnt1,n ≥ εPn−2 for some ε > 0. As a result t∗1,nPnt1,n ∈ B(Hn−2) is
invertible and the result follows. �

Lemma 2.4. Still assuming N ≥ 3, we have for any n ≥ 3:

d1 −
2dn−2

dn−1
>

2

dn−1
+ d1

d1 + dn−3dn−2

dn−1dn−2
.

Proof. Denote en = dn−1 − dn−2, fn = dn−5 + 1 + d1, with the convention dk = 0 if k < 0. For
n = 3 we have e3 = N2 −N − 1, f3 = 1 +N and since N ≥ 3 > 1 +

√
3 we have e3 > f3.

On the other hand we have, using the identity Ndn−1 = dn + dn−2 valid for n ∈ Z∗:

en+1 − en = dn − 2dn−1 + dn−2 = (N − 2)dn−1 ≥ dn−1 ≥ dn−4 − dn−5 = fn+1 − fn.

An easy induction then shows that we have en > fn for every n ≥ 3.
Multiplying this inequality by d1 we find

d1dn−1 − d1dn−2 > d1dn−5 + d1 + d2
1

⇐⇒ d1dn−1 − (d1 − 1)dn−2 > d1dn−5 + dn−2 + d1 + d2
1

=⇒ d1dn−1 − 2dn−2 > d1dn−3 + 2 + d2
1/dn−2,
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using the facts d1 ≥ 3, d1dn−5 + dn−2 ≥ dn−4 + dn−2 ≥ d1dn−3− 1, and dn−2 ≥ 1. Note that the
inequality d1dn−5 ≥ dn−4, resulting from the fusion rules, does not hold for n = 4, but one can
check directly that in this case d1dn−5 + dn−2 = d1dn−3 − 1. �

Proposition 2.5. Still assume N ≥ 3. For n ≥ 2 we have dimB(Hn)◦◦ = dim pnH
◦◦ =

d2n − d2n−2. For n = 1 we have dimB(H1)◦◦ = dim p1H
◦◦ = d2.

Proof. Recall the identification B(Hn) ' Hn⊗Hn via X 7→ x = (X⊗ id)tn. In this identification
the condition (id⊗Tr1)(X) = 0 reads (idn−1 ⊗ t∗ ⊗ idn−1)(x) = 0 and the corresponding kernel
is H2n ⊂ Hn ⊗ Hn. This holds as well if N = 2. Then the condition (Tr1⊗id)(X) = 0 reads
t∗1,2n(x) = 0, so that the result follows from the rank theorem and Lemma 2.3. For n = 1 both

conditions coincide and we have B(H1)◦◦ = B(H1)◦ ' H2. �

On the other hand in the case N = 2 one can check that t∗1,2n vanishes on H2n for all n, and

thus dimB(Hn)◦◦ = dim pnH
◦◦ = d2n for all n ≥ 1.

Recall then the “rotation operators” ρ : B(Hk) → B(Hk) already considered in [FV16] and
defined as follows: ρ(X) = (Pk ⊗ t∗)(id1 ⊗X ⊗ id1)(t⊗ Pk). It follows from [FV16, Lemma 3.1]
that ρ stabilizes the subspace B(Hn)◦ and contracts the Hilbert-Schmidt norm. On B(Hn)◦◦ it
behaves even better: as the next lemma shows, it is a finite order unitary — in particular, it is
diagonalizable.

Lemma 2.6. The map ρ is a bijection from B(Hn)◦◦ to itself. Moreover we have ρ2n = id and
ρ∗ = ρ−1 on B(Hn)◦◦.

Proof. We first note that for X ∈ B(Hn)◦◦ the element Y = (id1⊗ idn−1⊗ t∗)(id1⊗X⊗ id1)(t⊗
idn−1 ⊗ id1) of B(Hn−1 ⊗H1, H1 ⊗Hn−1) is directly equal to ρ(X). This is clear if n = 1 since
then id1 ⊗ idn−1 = id1 = P1. Assume n ≥ 2. Since t∗(id⊗ A)t = Tr1(A) for any A ∈ B(H1) we
have (t∗ ⊗ idn−2)Y = (id⊗ t∗)[(Tr1⊗id)(X)⊗ id1)] = 0, and similarly Y (idn−2 ⊗ t) = 0, so that
using Remark 2.2 we have Y = PnY Pn = ρ(X). Then we compute (Tr1⊗id)(Y ) using again the
morphism t. Thank to the conjugate equation we have

(Tr1⊗id)(Y ) = (t∗ ⊗ idn−1)(id1 ⊗ id1 ⊗ idn−1 ⊗ t∗)(id1 ⊗ id1 ⊗X ⊗ id1)

(id1 ⊗ t⊗ idn−1 ⊗ id1)(t⊗ idn−2 ⊗ id1)

= (idn−1 ⊗ t∗)(X ⊗ id1)(t⊗ idn−2 ⊗ id1) = 0,

since X ∈ B(Hn). Similarly (id ⊗ Tr1)(Y ) = 0 and this proves ρ(B(Hn)◦◦) ⊂ B(Hn)◦◦. The
conjugate equation also implies that (t∗⊗ idn)(id1⊗Y ⊗ id1)(idn⊗ t) = X so that ρ is a bijection
with ρ−1(X) = (t∗ ⊗ Pn)(id1 ⊗X ⊗ id1)(Pn ⊗ t). This holds as well for n = 1.

Let us check that ρ−1 is the adjoint of ρ with respect to the Hilbert-Schmidt scalar product.
Using twice the conjugate equation we have, for X, Y ∈ B(Hn)◦◦:

Trn(ρ−1(X)∗Y ) = (Tr1⊗Trn−1)[(idn ⊗ t∗)(id1 ⊗X∗ ⊗ id1)(t⊗ idn)Y ]

= Trn−1[(t∗ ⊗ idn−1 ⊗ t∗)(id1 ⊗ id1 ⊗X∗ ⊗ id1)

(id1 ⊗ t⊗ idn)(id1 ⊗ Y )(t⊗ idn−1)]

= Trn−1[(idn−1 ⊗ t∗)(X∗ ⊗ id1)(id1 ⊗ Y )(t⊗ idn−1)]

= Trn−1[(idn−1 ⊗ t∗)(X∗ ⊗ id1)(id1 ⊗ idn−1 ⊗ t∗ ⊗ id1)

(id1 ⊗ Y ⊗ id1 ⊗ id1)(t⊗ idn−1 ⊗ t)]
= (Trn−1⊗Tr1)[X∗(id1 ⊗ idn−1 ⊗ t∗)(id1 ⊗ Y ⊗ id1)(t⊗ idn−1 ⊗ id1)]

= Trn(X∗ρ(Y )).

Recall the notation tn1 ∈ Hom(C, H⊗n1 ⊗H⊗n1 ) from the Preliminaries and consider the associ-
ated antilinear map jn : H⊗n1 → H⊗n1 given by jn(ζ) = (ζ∗⊗ idn)tn1 . If (ei)i is the canonical basis
of H1 = CN we have jn(ei1⊗· · ·⊗ein) = ein⊗· · ·⊗ei1 so that jn◦jn = id and jn(ζ) = (idn⊗ζ∗)tn.
Using the fact that ρ(X) = (id1⊗ idn−1⊗ t∗)(id1⊗X⊗ id1)(t⊗ idn−1⊗ id1) for X ∈ B(Hn)◦◦ we
have easily ρn(X) = (idn⊗ tn∗)(idn⊗X⊗ id)(tn⊗ idn), which yields (ζ | ρn(X)ξ) = (jnξ | Xjnζ)
for all ζ, ξ ∈ Hn. Applying this identity a second time we get ρ2n(X) = X. �
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We shall now analyze the submodule AxA when x belongs to H◦◦. In the analogy with the
generator MASA a′′1 ⊂ L(FN ) in a free group factor, the vectors xi,j below play the role of the

words ai1ga
j
1 ∈ FN , where g ∈ FN does not start nor end with a1.

Notation 2.7. For x ∈ H and i, j ∈ N we denote xi,j =
∑

n pi+n+j(χipn(x)χj). For X ∈ B(Hn)
we denote Xi,j = Pi+n+j(idi ⊗X ⊗ idj)Pi+n+j ∈ B(Hi+n+j).

Remark 2.8. The sum in the definition of xi,j indeed converges in H, since its terms are
pairwise orthogonal an satisfy the inequality ‖χipn(x)χj‖ ≤ ‖χi‖‖χj‖‖pn(x)‖. This yields a
map (x 7→ xi,j) which is linear and bounded from H to H. We will mostly use the notation xi,j
in the case when x belongs to one of the subspaces pnH.

Note also that we have by construction un(X)i,j = ui+n+j(Xi,j) for X ∈ B(Hn). Indeed,
denote x = un(X) and recall that χi = ui(idi), χj = uj(idj). To compute the component
pi+n+j(χixχj) one has to use an orthonormal basis of isometric intertwiners T : Hi+n+j →
Hi⊗Hn⊗Hj . But according to the fusion rules there is only one such intertwiner up to a phase,
and by construction of the spaces Hk we can take for it the canonical inclusion of Hi+n+j into

Hi ⊗Hn ⊗Hj ⊂ H⊗(i+n+j)
1 , whose adjoint is given by Pi+n+j .

Finally, we record the fact thatXi,j is the orthogonal projection of idi⊗X⊗idj ∈ B(H
⊗(i+n+j)
1 )

onto B(Hi+n+j), with respect to the Hilbert-Schmidt scalar product — indeed for any Y , Z ∈
B(H

⊗(i+n+j)
1 ) we have Tr(Y ∗Pi+n+jZPi+n+j) = Tr((Pi+n+jY Pi+n+j)

∗Z).

Proposition 2.9. Fix k ∈ N∗, X ∈ B(Hk)
◦◦ an eigenvector of ρ and x = uk(X) ∈ H◦◦. Then

we have AxA = Span{xi,j | i, j ∈ N}.

Proof. Let us prove by induction over i+ j = n− k that xi,j ∈ AxA. Assume that xp,q ∈ AxA
if p+ q ≤ i+ j and compute χ1xi,j . We have pn−1(χ1xi,j) = (κ1,n

n−1)2un−1(id1 ∗n−1 Xi,j) and

id1 ∗n−1 Xi,j = (t∗ ⊗ Pn−1)(id1 ⊗Xi,j)(t⊗ Pn−1)(2.1)

= Pn−1(t∗ ⊗ idn−1)(id1 ⊗ Pn)(idi+1 ⊗X ⊗ idj)(id1 ⊗ Pn)(t⊗ idn−1)Pn−1.

Since the Jones-Wenzl projections Pn are intertwiners, we can expand them into linear combi-
nations of Temperley-Lieb diagrams, so that id1 ∗n−1Xi,j is a linear combination of maps of the
form Pn−1Tπ(X)Pn−1, where π is a Temperley-Lieb diagram with n− 1 upper and lower points

and an internal box with 2k points, and Tπ : B(H⊗k1 ) → B(H
⊗(n−1)
1 ) is the associated map.

Since we multiply on the left and on the right by Pn−1 and X = PkXPk belongs to B(Hk)
◦◦,

the term associated with π vanishes as soon as a string of π connects two upper points, or two
lower points, or two internal points.

Now consider the string originating from the first top left external point in a diagram π such
that Pn−1Tπ(X)Pn−1 6= 0. If it is not connected to the internal box, it has to connect the top left
point to the first bottom left external point, otherwise some other string would have to connect
two upper or two lower external point, because of the non-crossing constraint. We can re-apply
this reasoning to the following top left external points, until we find an external point connected
to X, say with index p+ 1 on the top external edge. Moreover up to replacing X by its image
ρl(X) under some iterated rotation we can assume that this external point is connected to the
first top left point of the internal box by a vertical edge. Thus our diagram has the following
form:

Pn−1Tπ(X)Pn−1 = ρl(X)

Pn−1

Pn−1

.

By the same reasoning we see that the (p + 2)th external point on the top edge connects to
the second top left point of the internal box ρl(X) by a vertical string (if k ≥ 2). Indeed if it is
connected to another point of the internal box, there will be a string joining two internal points,
and if it is connected to a bottom external point, there will be either a string connecting two
upper external points, or a string connecting two internal points. Continuing like this, we see
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that the only possibility for a non-vanishing diagram is one composed entirely of vertical lines,
i.e. Pn−1(idp⊗ ρl(X)⊗ idq)Pn−1, with l ∈ Z and p+ q = n− k− 1. Since X is an eigenvector of
ρ, this shows that pn−1(χ1xi,j) is a linear combination of vectors xp,q with p+ q < i+ j, which
belong to AxA by the induction hypothesis. Note that if i = j = 0 we have pn−1(χ1xi,j) = 0 ;
this can also be checked directly because (2.1) then equals (Tr1⊗id)(X).

We have pn+1(χ1xi,j) = pn+1(χ1χixχj) = xi+1,j because pn+1(χ1y) = 0 if y ∈ pk′H with
k′ < n. We have thus xi+1,j = χ1xi,j − pn−1(χ1xi,j) and it follows that xi+1,j belongs to AxA.
One can proceed in the same way on the right to show that xi,j+1 belongs to AxA. By induction
we have proved xi,j ∈ AxA for all i, j. Moreover from the identities χ1xi,j = xi+1,j+pn−1(χ1xi,j),
xi,jχ1 = xi,j+1+pn−1(xi,jχ1) and the fact that pn−1(χ1xi,j), pn−1(xi,jχ1) are linear combinations
of vectors xp,q it also follows that Span{xi,j} is stable under the left and right actions of A. �

Remark 2.10. Using the Jones-Wenzl recursion relations, one can prove more precisely that
pn−1(xi,jχ1) is a linear combination of xi−1,j , ρ

±1(x)i,j−1 and xi+1,j−2, where we abusively write
ρ(uk(X)) := uk(ρ(X)).

Notation 2.11. Choose for all k ≥ 1 a basis (Xr)r ⊂ B(Hk)
◦◦ of eigenvectors of ρ, normalized

in such a way that ‖uk(Xr)‖2 = 1. Denote Wk = (uk(Xr))r its image in pkH
◦◦. Put as well

W =
⋃
kWk, which is a linearly independent family consisting of unital vectors in H◦◦. For

x ∈W we denote H(x) = AxA, and for k ∈ N∗, H(k) = AWkA, using the left and right actions
of A. The previous lemma shows that the vectors xi,j span a dense subspace of H(x).

Proposition 2.12. The family W spans H◦ as a closed A,A-bimodule. Moreover, for x 6= y ∈W
we have H(x)⊥H(y).

Proof. Denote Ln = Span{Xi,j | X ∈ Wk, k ≤ n, i + j + k = n} ⊂ B(Hn)◦, and let us show by
induction over n ≥ 1 that Ln = B(Hn)◦. For n = 1 we have by definition L1 = SpanW1 =
B(H1)◦◦ = B(H1)◦. Assume that Ln = B(Hn)◦ and take Y ∈ L⊥n+1 ∩ B(Hn+1)◦. We want to
show that Y = 0. We consider first (Tr1⊗id)(Y ). For any generator Xi,j of Ln we have

Trn(X∗i,j(Tr1⊗id)(Y )) = (Tr1⊗Trn)(Pn+1(id1 ⊗X∗i,j)Pn+1Y ) = Trn+1(X∗i+1,jY ) = 0,

by assumption on Y . Since Ln = B(Hn)◦, this implies (Tr1⊗id)(Y ) = 0. Similarly, (id ⊗
Tr1)(Y ) = 0. As a result, Y ∈ B(Hn+1)◦◦. But B(Hn+1)◦◦ ⊂ Ln+1, and Y⊥Ln+1, so that
we have indeed proved Y = 0. Taking into account Proposition 2.9, this proves that pnH

◦ ⊂
SpanAWA for every n and the first result follows.

For the second part of the statement, take x ∈Wk, y ∈Wl distinct, with k ≤ l. The subspaces
H(x), resp. H(y) are spanned by vectors χp1xχ

q
1, resp. χr1yχ

s
1. We have

(χp1xχ
q
1 | χ

r
1yχ

s
1) = (x | χp+r1 yχq+s1 ) = (x | pk(χp+r1 yχq+s1 )).

But χp+r1 yχq+s1 ∈ Span{yi,j} and yi,j ∈ pi+l+jH. Since k ≤ l this implies that pk(χ
p+r
1 yχq+s1 ) ∈

Cy and the result follows since x⊥y. �

Denote B ⊂ B(H◦) the commutant of the left and right actions of A. Being the commutant
of an abelian algebra, it is a type I von Neumann algebra, which can be decomposed into type
In algebras. The numbers n ∈ N∗ ∪ {∞} appearing in this way form the Pukánszky invariant of
the maximal abelian subalgebra A.

Corollary 2.13. The bimodule H◦ is isomorphic to L2(A)⊗ `2(W )⊗ L2(A). In particular the
Pukánszky invariant of A ⊂M is {∞}.

Proof. Indeed the proof of in [FV16, Theorem 5.10] shows that the measure on [−2, 2]× [−2, 2]
induced by a given ζ ∈ H◦ ∩ A and the action of A ⊗ A on H◦ is equivalent to the Lebesgue
measure — in fact it has a non-zero analytic density. As a result, the corresponding cyclic
bimodule H(ζ) is isomorphic to the coarse bimodule L2(A)⊗L2(A). This applies to ζ = x ∈W .
Now, Proposition 2.12 shows that we have an isomorphism of A,A-bimodules

H◦ '
⊕
x∈W

L2(A)⊗ L2(A) ' L2(A)⊗ `2(W )⊗ L2(A).
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As a result (A ⊗ A)′ ∩ B(H◦) ' A⊗̄B(`2(W ))⊗̄A and the value of the Pukánszky invariant
follows since W is infinite. �

Corollary 2.14. For x ∈W the vectors xi,j are linearly independent.

Proof. Since the subspaces pnH
◦ are pairwise orthogonal, it suffices to consider a subfamily

(xi,j) with i + k + j = n fixed. Note that #{xi,j | i + k + j = n} = n − k + 1. According to
Proposition 2.12 we have

pnH
◦ =

⊕
k≤n

⊕
x∈Wk

Span{xi,j | i+ k + j = n},

so that dim pnH
◦ ≤

∑n
k=1(n − k + 1)#Wk. We will prove that this estimate is an equality, so

that dim Span{xi,j | i+ k + j = n} = n− k + 1 for all x ∈ Wk, k ≤ n, which implies the linear
independence.

Recall from Proposition 2.5 that #Wk = dimB(Hk)
◦◦ = d2k−d2k−2 for k ≥ 2, and #W1 = d2.

We have then∑n
k=1(n− k + 1)#Wk =

∑n
k=1(n− k + 1)d2k −

∑n
k=2(n− k + 1)d2k−2

=
∑n

k=1(n− k + 1)d2k −
∑n−1

k=1(n− k)d2k

=
∑n

k=1d2k = d2
n − 1 = dimB(Hn)◦ = dim pnH

◦.

The computation of the sum in the last line follows from the decomposition of un⊗ un given by
the fusion rules. �

Remark 2.15. As a result, the map Φ : cc(N)⊗H◦◦⊗cc(N)→ H◦, δi⊗x⊗δj 7→ xi,j is injective
with dense image. It is however not an isometry. We will see in the next section that, at least
for “large N”, it extends to an isomorphism from `2(N)⊗H◦◦ ⊗ `2(N) to H◦.

We end this section with one further property of elements of H◦◦ which is established using
the action of planar tangles and will be used in Section 4.

Proposition 2.16. For any ζ ∈ H(k), ζ ′ ∈ H(k′) and y ∈ pnH with n < |k − k′| we have
yζ⊥ζ ′. If k > n we have yζ ∈ H◦.

Proof. By bilinearity one can assume ζ = xi,j = ui+k+j(Xi,j), ζ
′ = x′i′,j′ = ui′+k′+j′(X

′∗
i′,j′),

with X ∈ B(Hk)
◦◦, X ′ ∈ B(Hk′)

◦◦. Denote also y = un(Y ) ∈ M with Y ∈ B(Hn). Then the
product yζ is a linear combination of elements um(Y ∗m Xi,j) with m = n + i + k + j − 2a.
Using the Peter-Weyl relations (1.1) it thus suffices to prove that Tr(X ′i′,j′(Y ∗mXi,j)) = 0, with

m = i′ + k′ + j′ = i+ k + j − 2a.
By definition, the element in the trace is computed by the following formula:

Pm(idi′ ⊗X ′ ⊗ idj′)Pm(idn−a ⊗ t∗a ⊗ idi+j+k−a)(idn ⊗ Pi+k+j)

(Y ⊗ idi ⊗X ⊗ idj)(idn ⊗ Pi+k+j)(idn−a ⊗ ta ⊗ idi+j+k−a)Pm.

Since Pm, Pi+k+j , ta are morphisms, this element is a linear combination of planar tangles on m
lower and upper points, with 3 inside boxes, applied to X, X ′, Y . Since Tr(Z) = t∗m(Z⊗ idm)tm,
the scalar Tr(X ′i′,j′(Y ∗m Xi,j)) is itself a linear combination of such planar tangles T , without

external points, applied to X, X ′, Y .
Fix one of these tangles and consider the strings starting at one of the 2k points on the

internal box corresponding to X. These strings can have their second ends on X, X ′ or Y . If
2k > 2k′ + 2n, the first possibility must happen at least once, i.e. there is a string connecting
two points of X. Since the strings are non crossing, this implies that there is even a string
connecting two consecutive points of the internal box corresponding to X. But then the value
of the tangle applied to X, X ′, Y is 0 since X ∈ B(Hk)

◦◦: see Remark 2.2.
If k < k′ − n we proceed in the same way by considering strings starting on the internal

box corresponding to X ′. The last assertion of the statement amounts to considering the trace
Tr(Y ∗m Xi,j) which is again a linear combination of planar tangles without external points
applied to Y and X, and if k > n the same argument as above applies. �
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3. Invertibility of the Gram Matrix

In this section we fix k ∈ N∗, x = uk(X) ∈ pkH
◦◦ with X ∈ B(Hk)

◦◦ an eigenvector of
ρ with associated eigenvalue µ, |µ| = 1. Recall the notation xi,j = pi+k+j(χixχj), Xi,j =
Pi+k+j(idi ⊗ X ⊗ idj)Pi+k+j . We know from the previous section that (xi,j) spans a dense
subspace of the bimodule AxA. Our aim is now to show that it is a Riesz basis, i.e. it implements
an isomorphism between H(x) = AxA in H and `2(N× N). We will only achieve this for small
q, i.e. large N . We thus consider the associated Gram matrix, which is block diagonal since
pmH⊥pnH for m 6= n. Let us formalize this as follows:

Notation 3.1. We fix k ∈ N∗ and a unital vector x = uk(X) ∈ Wk ⊂ pkH
◦◦. We denote

G = G(x) the Gram matrix of the family (xi,j)i,j ⊂ H, and Gn = Gn(x) its diagonal block
corresponding to indices (i, j) such that xi,j ∈ pnH, i.e. i+ k + j = n. Since k is fixed we drop
the second index j and denote xn;i = xi,j , Xn;i = Xi,j . For i, p ∈ {0, . . . , n − k} we denote
accordingly

Gn;i,p = (xn;i | xn;p) = d−1
n (Xn;i | Xn;p).

The second equality follows from the Peter-Weyl-Woronowicz orthogonality relations, using
the Hilbert-Schmidt scalar product in B(Hn). Let us record the following symmetry properties
of G:

Lemma 3.2. For any n = i+ k + j = p+ k + q we have

Gn;i,p(x) = Gn;p,i(x) = Gn;q,j(x
∗) = Gn;j,q(S(x)).

Proof. As a Gram matrix, Gn is self-adjoint, which corresponds to the first equality. Define
maps J , U : H → H by J(x) = x∗, U(x) = S(x) where S is the antipode. The maps are
surjective isometries because we are in the Kac case, and since un is orthogonal they stabilize
pnH and send χn to itself. We have then

Gn;i,p(x) = (pn(χixχj) | pn(χpxχq)) = (Jpn(χpxχq) | Jpn(χixχj))

= (pn(χqx
∗χp) | pn(χjx

∗χi)) = Gn;q,j(x
∗)

= (Upn(χixχj) | Upn(χpxχq)) = (pn(χjS(x)χi) | pn(χqS(x)χp)) = Gn;j,q(S(x)). �

Our main aim is then to show the existence of a constant C such that ‖Gn‖, ‖G−1
n ‖ ≤ C for

all n. In fact we even want the constant C to be uniform over k and x ∈ Wk, so that the map
Φ from Remark 2.15 will indeed be an isomorphism.

We shall first show that the Gram matrix G = G(x) is bounded as an operator on `2(N×N).
We start with an easy estimate, which is not sufficient for this purpose but will be useful later. We
then prove an off-diagonal decay estimate for the coefficients of the Gram matrix, see Lemma 3.4,
using the improvement of the main estimate of [FV16] established at Lemma 1.6. These two
results easily imply the boundedness of G(x) on `2(N×N), which we record at Proposition 3.5.
Note however that the constant C obtained in this way depends on k, so that one cannot deduce
the boundedness of the whole Gram matrix. This will be improved later.

Lemma 3.3. We have ‖xn;i‖2 ≤ (1 − q2)−3/2‖x‖2, hence |Gn;i,p| ≤ (1 − q2)−3‖x‖22, for all n,
0 ≤ i, p ≤ n− k.

Proof. We have

‖Xn;i‖22 = Tr(Pn(idi ⊗X∗ ⊗ idj)Pn(idi ⊗X ⊗ idj)Pn)

≤ Tr(Pn(idi ⊗X∗X ⊗ idj)Pn) ≤ Tr(Pi ⊗X∗X ⊗ Pj) = didj‖X‖22,

hence ‖xn;i‖22 ≤ (didjdk/dn)‖x‖22. The result then follows from Lemma 1.2. �

Lemma 3.4. For every q0 ∈ ]0, 1[ there exists α ∈ ]0, 1[ and C > 0 depending only on q0 such

that |Gn;i,p| ≤ Cqα(|p−i|−k)−2−k‖x‖22 for all n, i, p such that |p− i| ≥ k, as soon as q ∈ ]0, q0].
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Proof. The reader will find after the proof a graphical “explanation” of the computations. Write
n = i + k + j = p + k + q. We have (xn;i | xn;p) = Tr(X∗i,jXp,q)/dn. We first assume p − i ≥ k

and put a = b(p − i − k)/2c. By Lemma 1.3 we have ‖Pn − (idi+k+a ⊗ Pj−a)(Pp ⊗ idk+q)‖ ≤
Dqp−(i+k+a) ≤ Dqa, where D > 0 is a constant depending only on q0. This yields

(xn;i | xn;p) = d−1
n Trn[Pn(idi ⊗X∗ ⊗ idj)Pn(idp ⊗X ⊗ idq)Pn]

' d−1
n Trn[Pn(idi ⊗X∗ ⊗ ida ⊗ Pj−a)(Pp ⊗X ⊗ idq)Pn]

= d−1
n (Tri+k⊗Tra⊗Trj−a)[(idi ⊗X∗ ⊗ ida ⊗ Pj−a)(Pp ⊗X ⊗ idq)Pn].(3.1)

Since d−1
n Trn(Pn · Pn) is a state, the error is bounded by Dqa‖X‖2. In the last expression,

the projection Pp ⊗ idk ⊗ idq is absorbed in Pn, and since j − a ≥ k + q the partial trace
(idi+k⊗Tra⊗idj−a)(Pn) appears. We know from Lemma 1.6 that this partial trace is equal to a

multiple λ of the identity up to Edaq
bβac if q ∈ ]0, q0], for some β ∈ ]0, 1[ and E > 0 depending

only on q0. Applying the remaining traces and dividing by dn the total error is controlled by

Dqa‖X‖2 + Eqbβac
di+kdadj−a

dn
‖X‖2 ≤ qbβac(D + E/(1− q2

0)3)‖X‖22

≤ Cqα(p−i−k)−2−k‖x‖22,

for C = [D+E/(1−q2
0)3]/(1−q0) and α = β/2 — recall that ‖X‖22 = dk‖x‖22 ≤ q−k‖x‖22/(1−q).

But if we replace (idi+k ⊗ Tra⊗idj−a)(Pn) by λ(Pi+k ⊗ Pj−a) in (3.1) we can see the trace
Tr((idi⊗X∗)Pi+k) which vanishes (as well as Tr((ida′⊗X⊗idq)Pj−a), where a′ = d(p−i−k)/2e).

This proves the result if p− i ≥ k. If i− p ≥ k we can proceed in the same way “on the other
side” and the result follows because then q − j = |p− i| ≥ k. �

We give below a graphical version of the above proof, for the convenience of the reader, in
the case p − i ≥ k. Of course it is still necessary to carry out the quantitative bookkeeping of
approximations, as we did above. It is possible to draw similar graphical computations for many
lemmata in this section and the following ones.

X∗ Pj−a

XPp

Pn

Pn
X∗

X

Pn

Pn

Pn 'Tr(X∗
i,jXp,q) =

= ' = 0× 0.
Pn

X∗ X X∗ X

Pi+k Pj−a

Proposition 3.5. Fix q ∈ ]0, 1[ and assume that q ∈ ]0, q0]. There exists a constant C > 0,
depending on k and q0, such that ‖Gn‖ ≤ C‖x‖22 for all n. In particular G(x) is bounded.

Proof. Take the constants α, C provided by Lemma 3.4. Put l = k + d(2 + k)/αe, so that

αk+ 2 + k ≤ αl, and decompose Gn = Ĝn + Ǧn, where Ĝn;i,p = δ|i−p|≤lGn;i,p. From Lemma 3.4
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we have |Ǧn;i,p| ≤ Cqα(|p−i|−l)‖x‖22 and it is then a standard fact that Ǧ is bounded. More
precisely for any λ ∈ `2(N) we have by Cauchy-Schwarz∣∣∣∑i,pλ̄iλpǦn;i,p

∣∣∣ ≤ (
∑

i,p|λi|
2|Ǧn;i,p|)1/2(

∑
i,p|λp|

2|Ǧn;i,p|)1/2

≤ C‖x‖22
∑

i|λi|
2∑
|p−i|>lq

α(|p−i|−l) ≤ 2qαC‖x‖22
1− qα

‖λ‖2.

This shows that ‖Ǧn‖ ≤ 2qα0C‖x‖22/(1− qα0 ) for all n and q ∈ ]0, q0].
On the other hand by Lemma 3.3 we have |Gn;i,p| ≤ (1−q2

0)−3‖x‖22 for all n, i, p and it follows

easily ‖Ĝn‖ ≤ (2l + 1)(1− q2
0)−3‖x‖22. �

Now we want to prove that G has a bounded inverse and obtain uniform estimates with
respect to k. This requires a finer analysis of the band matrices Ĝn of the previous proof. We
first show that for m < n the diagonal blocks of size m − k + 1 of Gn “resemble” Gm, with a
better approximation order for blocks that are far away from the “borders” of Gn. This will
allow to reduce the analysis of Ĝn to that of a “fixed size” matrix Gm (in fact m will depend on
k, but not on n).

Lemma 3.6. Fix q0 ∈ ]0, 1[ and assume that q ∈ ]0, q0]. Assume that n = m + a + b and
m = i+ k + j = p+ k + q. Then there exists a constant C depending only on q0 such that

|Gm;i,p −Gn;i+a,p+a| ≤
{
C‖x‖22 qmax(j,q)−k if a = 0,

C‖x‖22 qmax(i,p)−k if b = 0.

We also have |Gm;i,p −Gn;i+a,p+a| ≤ C‖x‖22 qmin(i,j,p,q)−k for a, b arbitrary.

Proof. By definition we have n = (i + a) + k + (j + b) = (p + a) + k + (q + b). The case
b = 0 follows from the case a = 0 by symmetry. The “general case” follows from the first two
cases by going first from m to n′ = m + b and then from n′ to n = n′ + a, and observing that
Cqmax(j,q) + Cqmax(i,p) ≤ 2Cqmin(i,j,p,q). So we assume a = 0.

According to Lemma 1.3 we have ‖Pn − (idi+k ⊗ Pj+b)(Pm ⊗ idb)‖ ≤ Cqj , which yields

(xn;i | xn;p) = d−1
n Trn[Pn(idi ⊗X∗ ⊗ idj+b)Pn(idp ⊗X ⊗ idq+b)Pn]

' d−1
n Trn[Pn(idi ⊗X∗ ⊗ Pj+b)(Pm ⊗ idb)(idp ⊗X ⊗ idq+b)Pn]

= d−1
n (Trm⊗Trb)[Pn(idi ⊗X∗ ⊗ idj+b)(Pm ⊗ idb)(idp ⊗X ⊗ idq+b)]

up to Cqj‖X‖2 ≤ Cqjdk‖x‖22, since Pj+b is absorbed in Pn. Since by [VV07, Proposition 1.13]
we have (id⊗ Trb)(Pn) = (dn/dm)Pm, this reads

(xn;i | xn;p) ' d−1
m Trm[Pm(idi ⊗X∗ ⊗ idj)Pm(idp ⊗X ⊗ idq)] = (xm;i | xm;j)

up to Cqjdk‖x‖22 ≤ Cqj−k‖x‖22/(1− q0). If j ≤ q we proceed in the same way starting with the
estimate Pn ' (Pm ⊗ idb)(idp+k ⊗ Pq+b) up to Cqq. �

In the next Theorem we show that the blocks Gn of the Gram matrix G are related by a
recursion formula, which allows at Lemma 3.9 to obtain estimates on Gm with a good behavior
as k →∞, improving the “naive” Lemma 3.3.

Theorem 3.7. Fix n > k > 0 and x = uk(X) ∈ Wk with ρ(X) = µX. For 0 ≤ i < n − k and
0 ≤ p ≤ n− k we have:

Gn;i,p = δp<n−k(1−Anp )Gn−1;i,p + δp>0B
n
pGn−1;i,p−1 + δp>1C

n
pGn−1;i,p−2 where

Anp =
dp+kdp+k−1

dndn−1
, Bn

p = 2(−1)k Re(µ)
dp+k−1dp−1

dndn−1
, Cnp = −dp−1dp−2

dndn−1
.

Note that Anp = 1 if p = n− k, Bn
p = 0 if p = 0 and Cnp = 0 if p = 0 or 1, if one puts d−l = 0

for l > 0. Hence the corresponding terms vanish “naturally” from the recursion equation.
The proof of the theorem will easily follow from the following Lemma, that we will reuse in

Section 5, and which relies on two applications of Wenzl’s recursion relation (1.3).
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Lemma 3.8. For X ∈ B(Hk)
◦◦, k ∈ N∗, such that ρ(X) = µX, we have for all p, q ∈ N and

n = p+ k + q:

dn−1

dn
(id⊗ Tr1)(Xp,q) = δq>0(1−Anp )Xp,q−1 + δp>0B

n
pXp−1,q + δp>1C

n
pXp−2,q+1.

Proof. Step 1. In this proof we denote T = Xp,q. We will use the Jones-Wenzl recursion formula
for each projection Pn appearing in the definition T = Pn(idp ⊗X ⊗ idq)Pn, starting with the

left occurrence. By the adjoint of (1.3) we have T =
∑n

l=1(−1)n−l(dl−1/dn−1)Tl where

Tn = (Pn−1 ⊗ id1)(idp ⊗X ⊗ idq)Pn and

Tl = (Pn−1 ⊗ id1)(idn−2 ⊗ t)(idl−1 ⊗ t∗ ⊗ idn−l−1)(idp ⊗X ⊗ idq)Pn for l < n.

Step 2. Denote M = Tn. Recall that (id⊗Tr1)(Pn) = (dn/dn−1)Pn−1, so that if q ≥ 1 we have
(id ⊗ Tr1)(M) = (dn/dn−1)Xp,q−1. If q = 0 we have to apply (1.3) to the second occurrence of

Pn. This yields M =
∑n

l=1(−1)n−l (dl−1/dn−1)Ml where

Mn = (Pn−1 ⊗ id1)(idp ⊗X)(Pn−1 ⊗ id1) and

Ml = (Pn−1 ⊗ id1)(idp ⊗X)(idl−1 ⊗ t⊗ idn−l−1)(idn−2 ⊗ t∗)(Pn−1 ⊗ id1) for l < n.

In (id⊗ Tr1)(Mn) we can factor (id⊗ Tr1)(X) = 0 so this term disappears. Moreover all terms
Ml vanish because t hits X = XPk or Pn−1, except Mp. By the conjugate equation we have

(id⊗ Tr1)(Mp) = (idn−1 ⊗ t∗)(Mp ⊗ id1)(idn−1 ⊗ t)
= Pn−1(idn−1 ⊗ t∗)(idp ⊗X ⊗ id1)(idp−1 ⊗ t⊗ idn−p)Pn−1

and we recognize (id ⊗ Tr1)(Mp) = Pn−1(idp−1 ⊗ ρ(X))Pn−1. Altogether we can thus write

(id⊗ Tr1)(M) = δp<n−k(dn/dn−1)Xp,q−1 + (−1)kδp=n−kµ(dp−1/dn−1)Xp−1,0.

Step 3. Now we come back to the terms Tl with l < n. Most of them vanish because t∗

hits either X = PkX or Pn. The only remaining terms are M ′ := Tp+k, which appears only if
p < n − k (i.e. q ≥ 1), and M ′′ := Tp, which appears if p ≥ 1. For these terms we apply as

well (1.3) to the second occurrence of Pn. This yields M ′ =
∑n

l=1(−1)n−l(dl−1/dn−1)M ′l where

M ′n = (Pn−1 ⊗ id1)(idn−2 ⊗ t)(idp+k−1 ⊗ t∗ ⊗ idq−1)(idp ⊗X ⊗ idq)(Pn−1 ⊗ id1) and

M ′l = (Pn−1 ⊗ id1)(idn−2 ⊗ t)(idp+k−1 ⊗ t∗ ⊗ idq−1)

(idp ⊗X ⊗ idq)(idl−1 ⊗ t⊗ idn−l−1)(idn−2 ⊗ t∗)(Pn−1 ⊗ id1) for l < n.

One can simplify (id⊗Tr1)(M ′n) = (idn−1⊗t∗)(M ′n⊗id1)(idn−1⊗t) using the conjugate equation:

(id⊗ Tr1)(M ′n) = Pn−1(idp+k−1 ⊗ t∗ ⊗ idq)(idp ⊗X ⊗ idq+1)(Pn−1 ⊗ t).
This vanishes if q ≥ 2 because in this case t hits Pn−1. If q = 1 applying once again the
conjugate equation we recognize (id⊗Tr1)(M ′n) = Pn−1(idp ⊗X ⊗ idq−1)Pn−1. Finally we have
(id⊗ Tr1)(M ′n) = δp=n−k−1Xp,q−1.

Again most of the terms M ′l with l < n vanish because the last t hits either X = XPk or Pn−1.
The first non-vanishing term, if p ≥ 1, is M ′p and we recognize (idk⊗ t∗)(id1⊗X⊗ id1)(t⊗ idk) =
ρ(X) = µX. By the conjugate equation we have (id⊗ Tr1)(L⊗ tt∗) = L⊗ id1 so that

(id⊗ Tr1)(M ′p) = µ(id⊗ Tr1)[(Pn−1 ⊗ id1)(idn−2 ⊗ t)
(idp−1 ⊗X ⊗ idq−1)(idn−2 ⊗ t∗)(Pn−1 ⊗ id1)]

= µPn−1(idp−1 ⊗X ⊗ idq)Pn−1 = µXp−1,q.

The second non-vanishing term is M ′p+k, but it contains the term (idk−1 ⊗ t∗)(X ⊗ id1)

(idk−1 ⊗ t) = (id⊗Tr1)(X) hence it vanishes as well. Finally we have M ′p+k+1 which appears if
q ≥ 2 and by the conjugate equation can also be written

M ′p+k+1 = (Pn−1 ⊗ id1)(idn−2 ⊗ t)(idp ⊗X ⊗ idq−2)(idn−2 ⊗ t∗)(Pn−1 ⊗ id1).

As for M ′p we have the further simplification (id⊗Tr1)(M ′p+k+1) = Pn−1(idp⊗X⊗ idq−1)Pn−1 =
Xp,q−1.
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Step 4. We proceed similarly for M ′′, writing M ′′ =
∑n

l=1(−1)n−l(dl−1/dn−1)M ′′l with

M ′′n = (Pn−1 ⊗ id1)(idn−2 ⊗ t)(idp−1 ⊗ t∗ ⊗ idk+q−1)(idp ⊗X ⊗ idq)(Pn−1 ⊗ id1) and

M ′′l = (Pn−1 ⊗ id1)(idn−2 ⊗ t)(idp−1 ⊗ t∗ ⊗ idk+q−1)

(idp ⊗X ⊗ idq)(idl−1 ⊗ t⊗ idn−l−1)(idn−2 ⊗ t∗)(Pn−1 ⊗ id1) for l < n.

As in the case of M ′n we find

(id⊗ Tr1)(M ′′n) = Pn−1(idp−1 ⊗ t∗ ⊗ idq+k)(idp ⊗X ⊗ idq+1)(Pn−1 ⊗ t),

which vanishes as soon as q ≥ 1 because t then hits Pn−1. If q = 0 we recognize (id ⊗ Tr1)
(M ′′n) = Pn−1(idp−1 ⊗ ρ∗(X))Pn−1. Altogether we have (id⊗ Tr1)(M ′′n) = δp=n−kµ̄Xp−1,q.

The first non-vanishing term M ′′l is M ′′p−1, if p ≥ 2, which by the conjugate equation reads

M ′′p−1 = (Pn−1 ⊗ id1)(idn−2 ⊗ t)(idp−2 ⊗X ⊗ idq)(idn−2 ⊗ t∗)(Pn−1 ⊗ id1). As for M ′ it follows

(id⊗ Tr1)(M ′′p−1) = Pn−1(idp−2 ⊗X ⊗ idq+1)Pn−1 = Xp−2,q+1. The second non-vanishing term

would be M ′′p but it contains (Tr1⊗id)(X) hence in fact it vanishes. The last term to consider
is M ′′p+k which appears if q = n− p− k > 0 and we recognize

M ′′p+k = (Pn−1 ⊗ id1)(idn−2 ⊗ t)(idp−1 ⊗ ρ∗(X)⊗ idq−1)(idn−2 ⊗ t∗)(Pn−1 ⊗ id1)

which yields as before (id⊗ Tr1)(M ′′p+k) = µ̄Xp−1,q.

Step 5. Finally we can collect all terms as follows:

(id⊗ Tr1)(T ) = (id⊗ Tr1)

[
M + (−1)n−p−kδp<n−k

dp+k−1

dn−1
M ′n + (−1)kδn−k>p≥1

dp+k−1dp−1

d2
n−1

M ′p

− δp<n−k−1
dp+k−1dp+k

d2
n−1

M ′p+k+1 + (−1)n−pδp≥1
dp−1

dn−1
M ′′n

−δp≥2
dp−1dp−2

d2
n−1

M ′′p−1 + (−1)kδn−k>p≥1
dp−1dp+k−1

d2
n−1

M ′′p+k

]
.

According to the computations carried above we obtain:

d2
n−1(id⊗ Tr1)(T ) = δp<n−kdndn−1Xp,q−1 + (−1)kδp=n−kµdp+k−1dp−1Xp−1,q

− δp=n−k−1dp+k−1dp+kXp,q−1 + (−1)kδn−k>p≥1µdp+k−1dp−1Xp−1,q

− δp<n−k−1dp+k−1dp+kXp,q−1 + (−1)kδp=n−kµ̄dp−1dp+k−1Xp−1,q

− δp≥2dp−1dp−2Xp−2,q+1 + (−1)kδn−k>p≥1µ̄dp−1dp+k−1Xp−1,q.

Merging cases together as appropriate this yields the expression in the statement. �

Proof of Theorem 3.7. Recall that by assumption j ≥ 1, but we allow q = n − p − k = 0.
Multiplying the outcome of Lemma 3.8 by (idi ⊗X∗ ⊗ idj−1) on the left, we obtain

dn−1

dn
(id⊗ Tr1)((idi ⊗X∗ ⊗ idj)Xp,q) = δq>0(1−Anp )(idi ⊗X∗ ⊗ idj−1)Xp,q−1+

+ δp>0B
n
p (idi ⊗X∗ ⊗ idj−1)Xp−1,q + δp>1C

n
p (idi ⊗X∗ ⊗ idj−1)Xp−2,q+1.

We apply Tr
⊗(n−1)
1 to this identity. Since Xp,q = PnXp,qPn we have e.g.

Tr⊗n1 ((idi ⊗X∗ ⊗ idj)Xp,q) = Tr⊗n1 (X∗i,jXp,q) = Trn(X∗i,jXp,q),

hence we obtain

d−1
n Trn(X∗i,jXp,q) = δq>0(1−Anp )d−1

n−1 Trn−1(X∗i,j−1Xp,q−1)+

+ δp>0B
n
p d
−1
n−1 Trn−1(X∗i,j−1Xp−1,q) + δp>1C

n
p d
−1
n−1 Trn−1(X∗i,j−1Xp−2,q+1).

This corresponds to the identity in the statement by definition of the Gram matrix Gn, using
the Peter-Weyl expression of the scalar product. �
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Lemma 3.9. Fix q0 ∈ ]0, 1[ and assume that q ∈ ]0, q0]. Then there exists a constant C > 0,
depending only on q0, such that

|Gm;i,p| ≤ C(m− k + 1)qk+1‖x‖22 and

Gm;p,p ≥ (C−1 − C(m− k)qk+1)‖x‖22
if x ∈Wk and 0 ≤ i 6= p ≤ m− k.

Proof. Since Gm is symmetric we can assume i < p ≤ m − k. We have |Re(µ)| ≤ 1 and for

p ≤ m − k Lemma 1.2 shows that we have |Bm
p | ≤ 2qk+1/(1 − q2)2, |Cmp | ≤ q2(k+1)/(1 − q2)2.

Since moreover Amp ∈ [0, 1], the recursion formula of Theorem 3.7 and Lemma 3.3 imply

|Gm;i,p| ≤ δp<m−k|Gm−1;i,p|+ 3qk+1(1− q2)−5‖x‖22.
We iterate this inequality m− p− k+ 1 times, until we reach Gp+k−1;i,p, in which case the first
term disappears. This yields the first estimate with C = 3/(1− q2

0)5.
For the second one, let us start with Gm;0,0. In the recursion relation of Theorem 3.7 only

the first term is non zero when i = p = 0. By an easy induction we have thus

Gm;0,0 = Gk;0,0

m∏
l=k+1

(1−Al0) = ‖x‖22
m∏

l=k+1

(
1− dkdk−1

dldl−1

)
.

Using the explicit expression of the dimensions di and the fact that 1− q2k ≤ 1− q2l if l ≥ k we
obtain the following lower bound, which depends only on q0:

Gm;0,0 = ‖x‖22
m∏

l=k+1

(
1− q2(l−k) (1− q2k+2)(1− q2k)

(1− q2l+2)(1− q2l)

)

≥ ‖x‖22
∞∏

l=k+1

(
1− q2(l−k)

)
≥ ‖x‖22

∞∏
i=1

(1− q2i
0 ) ≥ C−1‖x‖22,

increasing C if necessary. Since ‖x‖2 = ‖x∗‖2, the same estimate is true for Gm;m−k,m−k by
Lemma 3.2.

For the other diagonal terms we use again the recursion equation, which yields for p < m−k:

Gm;p,p ≥ (1−Amp )Gm−1;p,p − 3qk+1(1− q2)−5‖x‖22.
Again we iterate until m = p+ k + 1, obtaining

Gm;p,p ≥ Gp+k;p,p
∏m
l=p+k+1(1−Alp)− 3(m− p− k)qk+1(1− q2)−5‖x‖22.

The coefficients 1 − Alp do not appear in the second term since they are dominated by 1. We

have already proved above that
∏m
l=p+k+1(1−Alp) ≥ C−1 (replace k by k+ p) and so we obtain

Gm;p,p ≥ C−2‖x‖22 − C(m− k)qk+1‖x‖22. �

The estimates we have obtained about the “fixed size” matrix Gm will be sufficient for our
purposes only in the q → 0 limit. This corresponds to letting q+q−1 = N →∞, and apparently
we are thus varying the spaces H1, Hk. However, let us note that the numbers

Gn;i,p = d−1
n Tr⊗n1 [Pn(idi ⊗X∗ ⊗ idj)Pn(idp ⊗X ⊗ idq)]

do not really depend on the precise form of the matrix X ∈ B(Hk)
◦◦, but only on k, ‖x‖2 and

on the eigenvalue µ of the rotation operator ρ corresponding to X. Indeed, we can expand the
projections Pn into linear combination of Temperley-Lieb diagrams π, whose coefficients depend
on n, π and the parameter q. Moreover, after this expansion the evaluation of

Tr⊗n1 [Tπ(idi ⊗X∗ ⊗ idj)Tπ′(idp ⊗X ⊗ idq)]

is given by the evaluation of a Temperley-Lieb tangle at X∗ and X. Non-vanishing terms
necessarily correspond to tangles where strings cannot start and end on the same internal box,
and so they are of the form Trk[ρ

r(X)∗ρs(X)] = µs−k‖X‖22 = dkµ
s−k‖x‖22. As a result Gn;i,p
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can as well be considered as a function of k, µ, ‖x‖2 and q. Then it makes sense to take a limit
q → 0, and this will allow to prove results “for large N”.

Theorem 3.10.
(1) For all q0 ∈ ]0, 1[ there exists C > 0 such that, assuming q ≤ q0, we have ‖Gn(x)‖ ≤ C

for all x ∈W and all n.
(2) There exists q1 ∈ ]0, 1[ and D > 0 such that, assuming q ≤ q1, we have ‖Gn(x)−1‖ ≤ D

for all x ∈W and all n.

This shows in particular that {xi,j | x ∈ W, i, j ∈ N} is a Riesz basis of H◦◦ if q ≤ q1, and that
the map Φ : `2(N)⊗H◦◦⊗ `2(N)→ H◦, δi⊗x⊗ δj 7→ xi,j from Remark 2.15 is an isomorphism.

Proof. Fix q0 ∈ ]0, 1[ and assume q < q0. In this proof C denotes a “generic constant” depending
on q0, that we will only modify a finite number of times. We take the constants C > 0 and
α > 0 of Lemma 3.4 and we fix the “cut-off width” l = k + d(3 + k)/αe. We will distinguish
three regimes for the coefficients of our Gram matrix: the diagonal entries, for which we have
the trivial estimate of Lemma 3.3 and the lower bound of Lemma 3.9 ; the entries Gn;i,p with
0 < |i− p| < 2l for which we have the uniform estimate of Lemma 3.9 with a good behavior as
k →∞ ; and the entries such that |i− p| ≥ 2l for which we have the off-diagonal decay estimate
of Lemma 3.4 with a bad behavior as k →∞.

Recall that Lemma 3.4 shows that |Gn;i,p| ≤ Cqα(|p−i|−k)−2−k‖x‖22 if |p − i| ≥ k, which by

definition of l yields |Gn;i,p| ≤ Cq1+α(|p−i|−l)‖x‖22. In particular for |p − i| ≥ 2l we obtain

|Gn;i,p| ≤ Cq1+α|p−i|/2‖x‖22.
We then deal with the entries such that 0 < |p− i| < 2l. First assuming n > 2l + 5k + 1, we

approximate each such entry Gn;i,p by a corresponding entry Gm;i−a,p−a of the smaller matrix
Gm with m− k = 2l + 4k + 1, using Lemma 3.6. Write n = i+ k + j = p+ k + q = m+ a+ b.
If i, j, p, q > 2k we can choose a, b such that i − a, p − a, j − b, q − b ≥ 2k + 1 — we can
e.g. take a = min(i, p) − 2k − 1, and since |i − p| < 2l we have i − a < 2l + 2k + 1 hence
j − b = 2l + 4k − (i− a) + 1 > 2k and, similarly, q − b > 2k. We have then

|Gn;i,p −Gm;i−a,p−a| ≤ Cq1+k‖x‖22.

If i ≤ 2k or p ≤ 2k we use the case a = 0, we have then j − b ≥ 2k + 1 (resp. q − b ≥ 2k + 1)
and the estimate still holds. Similarly if j ≤ 2k or q ≤ 2k we use the case b = 0.

Now if i 6= p Lemma 3.9 shows that |Gm;i−a,p−a| ≤ C(m − k + 1)qk+1‖x‖22. Altogether we

have obtained the estimate |Gn;i,p| ≤ C(2l + 4k + 3)q1+k‖x‖22 if 0 < |p − i| < 2l. It holds
also if n ≤ 2l + 5k + 1 by applying directly Lemma 3.9 with m = n. Observe moreover that

l ≤ (1+α−1)k+1+3α−1 ≤ 6α−1k. In particular the sequence vk = (2l+4k+3)q
k/2
0 is bounded,

hence we can modify C so that |Gn;i,p| ≤ Cq1+k/2‖x‖22 for 0 < |p− i| < 2l. In that case we have

|p− i| < 12α−1k, hence we have as well |Gn;i,p| ≤ Cq1+α|p−i|/24‖x‖22. Merging this with the case

|p− i| ≥ 2l we have finally |Gn;i,p| ≤ Cq1+α|p−i|/24‖x‖22 for all i 6= p, where C and α depend only
on q0.

Decompose Gn = Ĝn + Ǧn, where Ĝn is diagonal with the same diagonal entries as Gn.
The previous estimate shows that Ǧn is bounded, more precisely for any λ ∈ `2(N) we have by
Cauchy-Schwarz∣∣∣∑i,pλ̄iλpǦn;i,p

∣∣∣ ≤ (
∑

i,p|λi|
2|Ǧn;i,p|)1/2(

∑
i,p|λp|

2|Ǧn;i,p|)1/2

≤ Cq‖x‖22
∑

i|λi|
2∑
|p−i|≥1q

α|p−i|/24 ≤ 2q1+α/24C‖x‖22
1− qα/24

‖λ‖2.

This shows that ‖Ǧn‖ ≤ Cq‖x‖22 for all n and x, after dividing C by 2/(1− qα/24
0 ). On the other

hand we also have ‖Ĝn‖ ≤ ‖x‖22/(1− q2
0)3 by Lemma 3.3 and the first assertion is proved.

For the inverse of G, we need a lower bound on the diagonal entries. We proceed as above,
approximating each coefficient Gn;p,p by a diagonal coefficient Gm;p−a,p−a of a smaller matrix
Gm, with m − k = 1 + 4k, and either a = 0, b = 0, or p − a = 2k + 1 = q − b. This yields
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|Gn;p,p −Gm;p−a,p−a| ≤ Cqk+1‖x‖22. Then we use the lower bound of Lemma 3.9, obtaining

Gn;p,p ≥ C−1‖x‖22 − C(m− k + 1)qk+1‖x‖22 ≥ C−1‖x‖22 − Cq(4k + 2)qk0‖x‖22.
Again if m = 1 + 5k ≥ n we obtain this estimate directly from Lemma 3.9, without using
Gm. Since the sequence vk = (4k + 2)qk0 is bounded, we can modify C so as to obtain Gn;p,p ≥
(C−1−Cq)‖x‖22. For q small enough, C−1−Cq > 0 and this shows Ĝ−1

n ≤ (C−1−Cq)−1‖x‖−2
2 I.

Now we write Gn = (I +ǦnĜ
−1
n )Ĝn. The estimates obtained above show that we have

‖ǦnĜ−1
n ‖ ≤ D(q) := Cq/(C−1−Cq). For q1 small enough and q ≤ q1 we have D(q) ≤ D(q1) < 1

so that Gn is invertible. Moreover we have

(3.2) G−1
n = Ĝ−1

n

∑∞
i=0(−1)i[ǦnĜ

−1
n ]i

so that ‖G−1
n ‖ ≤ (C−1 − Cq1)−1(1−D(q1))−1‖x‖−2

2 . �

Remark 3.11. Using the recursion relation of Theorem 3.7 and the symmetry properties of Gn,
one can compute Gn by induction on n. Numerical experiments then show the existence, for all
q ∈ ]0, 1[, of a constant C > 0 such that ‖Gn‖ ≤ C‖x‖22, ‖G−1

n ‖ ≤ C‖x‖−2
2 for all n, k, x ∈ Wk.

Thus our proof is far from optimal and we strongly believe that the results of Theorem 3.10
hold for all q ∈ ]0, 1[ (with constants depending on q).

4. An Orthogonality Property

Recall from Sections 2 and 3 that we have an isomorphism of normed spaces Φ : `2(N)⊗H◦◦⊗
`2(N) → H◦. In this section we shall establish a crucial asymptotic orthogonality property of
the following subspaces:

Notation 4.1. For every m ∈ N we consider the following subspace of H◦:

Vm = Φ
(
`2(N≥m)⊗H◦◦ ⊗ `2(N≥m)

)
= Span{xi,j | x ∈ H◦◦, i, j ≥ m}.

In the rest of this section we will prove that for y ∈ pn(H◦) ⊂M the scalar product (ζy | yζ)
becomes small, uniformly on unit vectors ζ ∈ Vm, as m → ∞, cf. Theorem 4.9. We start by
computations in Corep(FON ) which culminate in the “local estimate” of Theorem 4.5. In these
computations x = uk(X) is a fixed element of pkH

◦◦, which is not assumed to be an eigenvector
of the rotation map ρ. We then assemble the pieces to come back to H(k) and finally H◦.

Recall from Section 1 that by Tannaka-Krein duality products xi,jy, yxi,j can be computed
from the elements Xi,j ∗m Y , Y ∗m Xi,j ∈ B(Hm) if x = uk(X) and y = un(Y ). Recall also

that we use the Hilbert-Schmidt norm ‖X‖2 := Tr(X∗X)1/2 on B(Hk). We have ‖AXB‖2 ≤
‖A‖‖X‖2‖B‖, where ‖A‖, ‖B‖ are the operator norms of A, B ∈ B(Hk). This yields for
instance the inequality ‖Xi,j ∗m Y ‖2 ≤ da‖Xi,j‖2‖Y ‖2, where m = i + k + j + n − 2a, and we

recall moreover that ‖Xi,j‖2 ≤
√
didj‖X‖2, see e.g. the proof of Lemma 3.3. We still make

repeated use of Lemma 1.2 which allows to replace dl with q−l up to multiplicative constants.

Lemma 4.2. Fix k, n ∈ N and X ∈ B(Hk)
◦◦, Y ∈ B(Hn)◦. Then for all i ≥ n, r ∈ N, j ≥ 2r,

m = n+ i+ k + j − 2a with 0 ≤ a ≤ n, there exists Z ∈ B(Hm−2r) such that

‖Y ∗m Xi,j − Pm(Z ⊗ id2r)Pm‖2 ≤ Cdaqi+k+j−a−2r
√
didj‖X‖2‖Y ‖2,

where C is a constant depending only on q, and ‖Z‖2 ≤ da
√
didj−2r‖X‖2‖Y ‖2.

Proof. We have by definition

Y ∗m Xi,j = Pm(idn−a ⊗ t∗a ⊗ idi+k+j−a)(idn ⊗ Pi+k+j)(Y ⊗ idi ⊗X ⊗ idj)

(idn ⊗ Pi+k+j)(idn−a ⊗ ta ⊗ idi+k+j−a)Pm.

We use the estimate from Lemma 1.3 as follows: Pi+k+j ' (ida ⊗ Pi+k+j−a) (Pi+k+j−2r ⊗ id2r)

up to Cqi+k+j−a−2r in operator norm. Since (idn−a⊗Pi+k+j−a) is absorbed by Pm we can write

Y ∗m Xi,j ' Pm(idn−a ⊗ t∗a ⊗ idi+k+j−a)(idn ⊗ Pi+k+j−2r ⊗ id2r)(Y ⊗ idi ⊗X ⊗ idj)

(idn ⊗ Pi+k+j−2r ⊗ id2r)(idn−a ⊗ ta ⊗ idi+k+j−a)Pm

up to 2C‖ta‖2qi+k+j−a−2r‖Y ⊗ idi⊗X⊗ idj‖2 = 2Cdaq
i+k+j−a−2r

√
didj‖X‖2‖Y ‖2 in HS norm.
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This yields the result with

Z = Pm−2r(idn−a ⊗ t∗a ⊗ idi+k+j−a−2r)(idn ⊗ Pi+k+j−2r)(Y ⊗ idi ⊗X ⊗ idj−2r)

(idn ⊗ Pi+k+j−2r)(idn−a ⊗ t∗a ⊗ idi+k+j−a−2r)Pm−2r

which satisfies the right norm estimate. Note that we have Z = Y ∗m−2r Xi,j−2r. �

Lemma 4.3. Fix k, n ∈ N and X ∈ B(Hk)
◦◦, Y ∈ B(Hn)◦. Then for all i ≥ n, p ∈ N,

j ≥ 2n+ 3p, m = n+ i+ k + j − 2a with 0 ≤ a ≤ n, we have

‖(id⊗ Trn+2p)(Xi,j ∗m Y )‖2 ≤ Cqαpq−pq−aq−(i+j+n)/2‖X‖2‖Y ‖2,

where C > 0, α ∈ ]0, 1[ are constants depending only on q.

Proof. In this proof C denotes a generic constant, depending only on q and that we will modify
only a finite number of times.

We write Trn+2p = (Trp⊗Trp+a ⊗Trn−a) (Pn+2p · Pn+2p). Applying this to Xi,j ∗m Y , the
projections id⊗ Pn+2p are absorbed in Pm:

(id⊗ Trn+2p)(Xi,j ∗m Y ) = (idm−2p−n ⊗ Trp⊗Trp+a⊗Trn−a)[

Pm(idm−n+a ⊗ t∗a ⊗ idn−a)(Xi,j ⊗ Y )(idm−n+a ⊗ ta ⊗ idn−a)Pm]

We shall proceed to three successive approximations to show that this quantity is almost zero.
We first use the estimate Pm ' (idm−p−n ⊗ Pp+n)(Pm−n+a ⊗ idn−a) up to Cqp+a in operator

norm, from Lemma 1.3. The projections Pm−n+a ⊗ id are absorbed by Xi,j so that

Pm(idm−n+a ⊗ t∗a ⊗ idn−a)(Xi,j ⊗ Y )(idm−n+a ⊗ ta ⊗ idn−a)Pm '
' (idm−p−n ⊗ Pp+n)(idm−n+a ⊗ t∗a ⊗ idn−a)

(Xi,j ⊗ Y )(idm−n+a ⊗ ta ⊗ idn−a)(idm−p−n ⊗ Pp+n),

with an error controlled by 2Cqp+a‖ta‖2‖Xi,j ⊗ Y ‖2 ≤ 2Cqp+ada
√
didj‖X‖2‖Y ‖2 in Hilbert-

Schmidt norm. Observing that Trp hits only Xi,j , we obtain

(id⊗ Tr2p+n)(Xi,j ∗m Y ) ' (idm−2p−n ⊗ Trp+a⊗Trn−a)[(idm−2p−n ⊗ Pp+n)

(idm−n−p+a ⊗ t∗a ⊗ idn−a)(Z ⊗ Y )(idm−n−p+a ⊗ ta ⊗ idn−a)(idm−2p−n ⊗ Pp+n)],

where Z = (idm−2p−n ⊗ Trp⊗idp+2a)(Xi,j). We denote the right-hand side by Φ(Z), with
Φ : B(Hm−2p−n ⊗ Hp+2a) → B(Hm−2p−n). After applying the trace Trp⊗ Trp+a⊗Trn−a, see
e.g. Lemma 1.5, the error is controlled as follows:

‖(id⊗ Tr2p+n)(Xi,j ∗m Y )− Φ(Z)‖2 ≤ 2Cqp+ada
√
dpdp+adn−adidj‖X‖2‖Y ‖2

≤ 2Cq−(i+j+n)/2‖X‖2‖Y ‖2,

up to dividing C by the appropriate power of 1/(1− q2), cf. Lemma 1.2. This error is less that
the upper bounded in the statement.

Then we use the estimate Pi+j+k ' (Pi+k+p⊗ idj−p)(idi+k⊗Pj), up to Cqp in operator norm,
in the expression of Z. We have by assumption j ≥ 3p+ 2a, and in particular we can write

Z ' (idi+k+j−2p−2a ⊗ Trp⊗idp+2a)[(Pi+k+p ⊗ idj−p)(idi ⊗X ⊗ Pj)(Pi+k+p ⊗ idj−p)]

= (Pi+k+p ⊗ idj−2p)(idi ⊗X ⊗ P ′j)(Pi+k+p ⊗ idj−2p) =: Z ′

where P ′j = (idj−2p−2a ⊗Trp⊗idp+2a)(Pj) ∈ B(Hj−2p−2a ⊗Hp+2a). The error in Z is controlled

in HS norm by 2Cqp
√
dp‖Pi ⊗X ⊗ Pj‖2 = 2Cqp

√
dpdidj‖X‖2, so that

‖Φ(Z)− Φ(Z ′)‖2 ≤ 2Cqpda
√
dpdp+adn−adidj‖X‖2‖Y ‖2

≤ 2Cq−aq−(i+j+n)/2‖X‖2‖Y ‖2.

Again this is better than the estimate we are trying to prove.
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Now Lemma 1.6 shows that P ′j ' λ(idj−2p−2a⊗ idp+2a) in B(Hj−2p−2a⊗Hp+2a), up to Cqαpdp
in operator norm, for some constant λ depending on all parameters (and α > 0 depending only
on q). In HS norm we can control this error by Cqαpdp

√
dj−2p−2adp+2a. This yields

Z ′ ' Z ′′ := λ[(Pi+k+p ⊗ idj−3p−2a)(idi ⊗X ⊗ idj−2p−2a)(Pi+k+p ⊗ idj−3p−2a)]⊗ idp+2a,

and we have the control

‖Φ(Z ′)− Φ(Z ′′)‖2 ≤ Cqαpdadp
√
didj−2p−2adp+2adp+adn−a‖X‖2‖Y ‖2

≤ Cqαpq−aq−pq−(i+j+n)/2‖X‖2‖Y ‖2,

which corresponds to the estimate in the statement.
We finally arrived at

Φ(Z ′′) = λ(Pi+k+p ⊗ idj−3p−2a)(idi ⊗X ⊗ idj−2p−2a)(Pi+k+p ⊗ idj−3p−2a)×
× (Trp+a⊗Trn−a)[(idp+a ⊗ t∗a ⊗ idn−a)(idp+2a ⊗ Y )(idp+a ⊗ ta ⊗ idn−a)Pp+n].

We claim that the second line above vanishes. Indeed (Trp+a⊗idn−a)(Pp+n) is a multiple of
idn−a, since it is an intertwiner of Hn−a. We are then left with

Trn−a[(t
∗
a ⊗ idn−a)(ida ⊗ Y )(ta ⊗ idn−a)] = (Tra⊗Trn−a)(Y ),

which vanishes because y ∈ pnH◦. Hence Φ(Z ′′) = 0 and the result is proved. �

Lemma 4.4. For r ≤ m/2, Z ∈ B(Hm−2r), S = Pm(Z ⊗ id2r)Pm and T ∈ B(Hm) we have

|(S | T )| ≤
√
dr‖(id⊗ Trr)(T )‖2‖Z‖2 + C‖Z‖2‖T‖2,

for some constant C depending only on q.

Proof. Recall once again from Lemma 1.3 that Pm ' (Pm−r ⊗ idr)(idm−2r ⊗ P2r) up to Cqr,
where C is a constant depending only on q. Since T (idm−2r ⊗ P2r) = T = PmT we have

(S | T ) = Trm(Pm(Z∗ ⊗ id2r)PmT )

' (Trm−2r ⊗Tr2r)((idm−2r ⊗ P2r)(Pm−r ⊗ idr)(Z
∗ ⊗ id2r)T )

= (Trm−2r ⊗Trr ⊗Trr)((Pm−r ⊗ idr)(Z
∗ ⊗ idr ⊗ idr)T )

= Trm−r[Pm−r(Z
∗ ⊗ idr)Pm−r(id⊗ Trr)(T )].

By Cauchy-Schwarz the last quantity is dominated by
√
dr‖Z‖2‖(id⊗Trr)(T )‖2. Moreover the

error term in the second line is similarly bounded by Cqr‖Z∗⊗ idr⊗ idr‖2‖T‖2 = Cqr
√
drdr‖Z‖2

‖T‖2 ≤ C ′‖Z‖2‖T‖2. �

Theorem 4.5. Fix k, k′, n ∈ N and X ∈ B(Hk)
◦◦, X ′ ∈ B(Hk′)

◦◦, Y ∈ B(Hn)◦. Then for all
i, j, i′, j′ ≥ 10n and m = n+ i+ k + j − 2a = n+ i′ + k′ + j′ − 2a′ with 0 ≤ a, a′ ≤ n, we have

|(Xi,j ∗m Y | Y ∗m X ′i′,j′)| ≤ Cdm(qα(i′+j′) + qαmin(j,j′))q(k+k′)/2‖X‖2‖X ′‖2‖Y ‖22,

where α > 0 is a constant depending only on q, and C is a constant depending on q and n.

Proof. We put p = bmin(j, j′)/10c − n and r = n + 2p. Thanks to the assumption on j, j′ we
have m ≥ 2r. We first apply Lemma 4.2 to find Z ∈ B(Hm−2r) such that ‖Y ∗m X ′i′,j′ − S‖2 ≤
Cqi

′+k′+j′−a′−2rda′
√
di′dj′‖X ′‖2‖Y ‖2 with S = Pm(Z ⊗ id2r)Pm. The condition j′ ≥ 2r is

satisfied since p ≤ 1
10j
′ − n. We have then

|(Xi,j ∗m Y | Y ∗m X ′i′,j′)| ≤ |(Xi,j ∗m Y | S)|+ ‖Xi,j ∗m Y ‖2‖Y ∗m X ′i′,j′ − S‖2.

Note that ‖Xi,j ∗m Y ‖2 ≤ da
√
didj‖X‖2‖Y ‖2, and since 2r ≤ j′/2 we have

‖Xi,j ∗m Y ‖2‖Y ∗m X ′i′,j′ − S‖2 ≤ Cqi
′+k′+j′−a′−2rdada′

√
didjdi′dj′‖X‖2‖X ′‖2‖Y ‖22

≤ Cqi′/2q−(i+j)/2qk
′
q−a−2a′‖X‖2‖X ′‖2‖Y ‖22

≤ Cndmqi
′+j′/2q(k+3k′)/2‖X‖2‖X ′‖2‖Y ‖22,
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were Cn is a constant depending on n and q. We apply then Lemma 4.4 to T = Xi,j ∗m Y and
our S. This yields

|(Xi,j ∗m Y | S)| ≤
√
dr‖(id⊗ Trr)(Xi,j ∗m Y )‖2‖Z‖2 + C‖Z‖2‖Xi,j ∗m Y ‖2.

Lemma 4.2 also provides a bound on ‖Z‖2, in particular the second term on the right-hand side
above is bounded by

Cda′da
√
didjdi′dj′−2r‖X‖2‖X ′‖2‖Y ‖22 ≤ Cq−a−a

′
q−(i+j+i′+j′)/2qr‖X‖2‖X ′‖2‖Y ‖22

≤ C ′ndmq
1
5

min(j,j′)q(k+k′)/2‖X‖2‖X ′‖2‖Y ‖22,

since we have r ≥ 1
5 min(j, j′)− n− 2.

We finally apply Lemma 4.3. Again the condition j ≥ 2n+3p is satisfied because p ≤ 1
10j−n.

This yields constants α0 ∈ ]0, 1[, C > 0 depending only on q such that√
dr‖(id⊗ Trr)(T )‖2‖Z‖2 ≤ C

√
drq

α0pq−pq−aq−(i+j+n)/2da′
√
di′dj′−2r‖X‖2‖X ′‖2‖Y ‖22

≤ Cqα0pq−p+r/2q−a−a
′
q−(i+j+n)/2q−(i′+j′)/2‖X‖2‖X ′‖2‖Y ‖22

≤ C ′′ndmqα0pq(k+k′)/2‖X‖2‖X ′‖2‖Y ‖22.

Since p ≥ 1
10 min(j, j′)− n− 1, this yields the result, with α = min(α0/10, 1/5). �

Corollary 4.6. Fix k, k′, n ∈ N and x ∈ pkH◦◦, x′ ∈ pk′H◦◦, y ∈ pnH◦. Then for i, i′, j,
j′ ≥ 10n we have

|(xi,jy | yx′i′,j′)| ≤ C(qα(i+j) + qα(i′+j′) + qαmax(min(i,i′),min(j,j′)))‖x‖2‖x′‖2‖y‖22,
where α > 0 is a constant depending only on q, and C is a constant depending on q and n.

Proof. We have x = uk(X), x′ = uk′(X
′), y = un(Y ) with X ∈ B(Hk)

◦◦, X ′ ∈ B(Hk′)
◦◦,

y ∈ B(Hn)◦. Recall from Remark 2.8 that we have then xi,j = ui+k+j(Xi,j). Following the
reminder in Section 1 — specifically Equation (1.4) and Notation 1.1 — we obtain xi,jy =∑n

a=0(κi+k+j,n
m )2um(Xi,j ∗m Y ), where m = i + k + j + n − 2a as usual. The same holds for

yx′i′,j′ , and the Peter–Weyl–Woronowicz Equation (1.1) yields

(xi,jy | yx′i′,j′) =
n∑
a=0

1

dm

(
κi+k+j,n
m κn,i

′+k′+j′
m

)2
(Xi,j ∗m Y | Y ∗m X ′i′,j′).

According to Lemma 1.4, the constants κ are uniformly bounded by a constant depending only
on q. Applying Theorem 4.5 and noticing that qk/2‖X‖2 = qk/2

√
dk‖x‖2 ≤ C‖x‖2 we obtain

|(xi,jy | yx′i′,j′)| ≤ C(qα(i′+j′) + qαmin(j,j′))‖x‖2‖x′‖2‖y‖22,
where C is a constant depending only on q and n.

The estimate in the statement follows from this one by symmetry, by switching left and right
in Lemmata 4.2, 4.3 and 4.4. More precisely, recall that the antipode S is isometric on `2(�) in
the Kac case, and observe that S(χi) = χi, so that S(xi,j) = S(x)j,i. Applying the first part of
this proof we thus get

|(xi,jy | yx′i′,j′)| = |(yx′i′,j′ | xi,jy)| = |(S(x′)j′,i′S(y) | S(y)S(x)j,i)|

≤ C(qα(i+j) + qαmin(i′,i))‖x‖2‖x′‖2‖y‖22.
Taking the best of this estimate and the previous one yields the result. �

To pass from the “local” result of Corollary 4.6 to the “global” results of Proposition 4.8 and
Theorem 4.9 we will need to analyze the kernel appearing on the right-hand side in Corollary 4.6.
We state separately the following elementary lemma which will be useful for this purpose.

Lemma 4.7. Let A, B ∈ `2(N×N) and put qp;i,k = qmax(min(i,k),min(p−i,p−k)). Then there exists
a constant C > 0 depending only on q such that∑

i≥0

∑
k≥0

∑
p≥i,k qp;i,k|Ai,p−iBk,p−k| ≤ C‖A‖2‖B‖2.
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Proof. Denote T = {(i, k, p) ∈ N3 | p ≥ i, p ≥ k}. We start by applying Cauchy-Schwarz:

(
∑

T qp;i,k|Ai,p−iBk,p−k|)
2 ≤

∑
T qp;i,k|Ai,p−i|

2 ×
∑

T qp;i,k|Bk,p−k|
2.

By the symmetry in i and k it suffices to prove that
∑

T qp;i,k|Ai,p−i|2 ≤ C‖A‖22, which we can
also write

∑∞
i=0

∑∞
p=i sp;i|Ai,p−i|2 ≤ C‖A‖22 with sp;i :=

∑p
k=0 qp;i,k. This holds for all A if and

only if sp;i is bounded independently of i and p. Since qp;i,k = qp;p−i,p−k we have sp;i = sp;p−i,
thus we can assume 0 ≤ i ≤ p− i. We write then

sp;i =

p∑
k=0

qp;i,k =
(∑i−1

k=0 +
∑p−i

k=i +
∑p

k=p−i+1

)
qp;i,k

=
∑i−1

k=0q
max(k,p−i) +

(∑p−i
k=i +

∑p
k=p−i+1

)
qmax(i,p−k)

= iqp−i +
(∑p−i

k=iq
p−k
)

+ iqi ≤ 2 sup
i

(iqi) + 1
1−q . �

Recall from Notation 2.11 that for w ∈W , k ∈ N∗ we denote H(w) resp. H(k) the closure of
AwA resp. AWkA in H◦, where W is our privileged basis of H◦◦. Recall from Notation 3.1 that
we denote G(w) the Gram matrix of the family of vectors wi,j , for w ∈W .

Proposition 4.8. Fix k, k′, n ∈ N∗ and y ∈ pnH
◦. Assume that we have a common upper

bound ‖G(w)−1‖ ≤ D‖w‖−2
2 , ‖G(w)‖ ≤ D‖w‖22 for all w ∈ Wk ∪Wk′. Then for any m ≥ 10n

and ζ ∈ Vm ∩H(k), ζ ′ ∈ Vm ∩H(k′) we have |(ζy | yζ ′)| ≤ CDqα(m−|k−k′|)‖ζ‖‖ζ ′‖, where α > 0
is a constant depending only on q, and C is a constant depending on q, n and y.

Proof. By assumption the map (w, i, j) 7→ wij induces a bicontinuous isomorphism between
pkH

◦◦ ⊗ `2(N × N) and H(k). More precisely, since AwA⊥Aw′A for w 6= w′ in Wk, the Gram
matrix G(k) of (wi,j)i,j,w, with w ∈ Wk, i, j ∈ N, is block diagonal with G(w), w ∈ Wk,
as diagonal blocks, and thus it is bounded with bounded inverse by hypothesis. We can in
particular decompose ζ =

∑
i,j x(i,j)i,j with x(i,j) ∈ pkH◦◦ and, denoting x = (x(i,j))i,j , we have

‖x‖22 =
∑

i,j ‖x(i,j)‖2 ≤ D‖ζ‖2. Similarly we write ζ ′ =
∑

i,j x
′(i,j)i,j with x′(i,j) ∈ pk′H◦◦ and

‖x′‖22 ≤ D‖ζ ′‖2. We have then by Corollary 4.6:

|(ζy | yζ ′)| ≤
∑

i,j

∑
i′,j′ |(x(i,j)i,jy | yx′(i′,j′)i′,j′)|

≤ C
∑

i,j

∑
i′,j′(q

α(i+j) + qα(i′+j′) + qαmax(min(i,i′),min(j,j′)))‖x(i,j)‖‖x′(i′,j′)‖(4.1)

where C depends on q, n and y. Since ζ, ζ ′ ∈ Vm we have x(i,j) = x′(i′,j′) = 0 unless i, j, i′,
j′ ≥ m. Moreover the scalar product (x(i,j)i,jy | yx′(i′,j′)i′,j′) vanishes unless ui+k+j ⊗ un and
un⊗ ui′+k′+j′ have a common subobject, which entails |i+ k+ j− i′− k′− j′| ≤ 2n. We remove
from (4.1) the terms that do not satisfy these conditions. Moreover we regroup the three powers
of q that appear in (4.1) into three distinct sums S1, S2, S3 over i, i′, j, j′.

We start with S3. Denote p = i + j − 2m, p′ = i′ + j′ − 2m, l = p − p′. This yields a
bijection (i, i′, j, j′) 7→ (l, i, i′, p) in Z4 and we shall compute S3 by summing over (l, i, i′, p) in
the appropriate subset of Z4. If l ≥ 0, we put further

¯
i = i−m ∈ N,

¯
i′ = i′−m+ l ∈ N≥l. Note

that j −m = p−
¯
i and j′ −m = p−

¯
i′, so that

max(min(i, i′),min(j, j′)) = max(min(
¯
i,

¯
i′ − l),min(p−

¯
i, p−

¯
i′)) +m

≥ max(min(
¯
i,

¯
i′),min(p−

¯
i, p−

¯
i′)) +m− |l|

⇒ qαmax(min(i,i′),min(j,j′)) ≤ qα(m−|l|)qαp;
¯
i,
¯
i′ ,

using the notation of Lemma 4.7. If l < 0, we put rather
¯
i = i−m− l ∈ N≥−l,

¯
i′ = i′ −m ∈ N

so that j −m = p′ −
¯
i and j′ −m = p′ −

¯
i′, and we obtain:

qαmax(min(i,i′),min(j,j′)) ≤ qα(m−|l|)qαp′;
¯
i,
¯
i′ .
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The constraints j, j′ ≥ m translate to p ≥
¯
i,

¯
i′ when l ≥ 0, and to p′ ≥

¯
i,

¯
i′ when l < 0.

Re-organizing S3 we thus obtain

S3 ≤
∑
l≥0

Cqα(m−|l|)
∞∑

¯
i=0

∞∑
¯
i′=l

∑
p≥

¯
i,
¯
i′

‖x(
¯
i+m,p−

¯
i+m)‖‖x′(

¯
i′+m−l,p−

¯
i′+m)‖ qαp;

¯
i,
¯
i′

+
∑
l<0

Cqα(m−|l|)
∞∑

¯
i=−l

∞∑
¯
i′=0

∑
p′≥

¯
i,
¯
i′

‖x(
¯
i+m+l,p′−

¯
i+m)‖‖x′(

¯
i′+m,p′−

¯
i′+m)‖ qαp′;

¯
i,
¯
i′ .

For the terms l ≥ 0 we apply Lemma 4.7 with Ar,s = ‖x(r+m,s+m)‖, Br,s = ‖x′(r+m−l,s+m)‖,
which satisfy ‖A‖2 = ‖x‖2, ‖B‖2 = ‖x′‖2. By adding vanishing terms to the sum we can assume
that the sum over

¯
i′ starts at

¯
i′ = 0 to apply this Lemma. We apply Lemma 4.7 similarly to

each term l < 0. Observe finally that |l− (k′−k)| = |i+k+ j− i′−k′− j′| ≤ 2n, so that l takes
at most 4n+ 1 values and |l| ≤ |k− k′|+ 2n. Lemma 4.7 thus yields the following upper bound:

S3 ≤ CC ′(4n+ 1)qα(m−2n−|k−k′|)‖x‖2‖x′‖2 ≤ C ′′Dqα(m−|k−k′|)‖ζ‖‖ζ ′‖

with C ′′ depending on q, n and y.
The case of S1 (and of S2) is similar but the counterpart of Lemma 4.7 is simpler. We put

¯
i = i−m,

¯
j = j −m,

¯
i′ = i′ −m,

¯
j′ = j′ −m. Observe that for non-vanishing terms in the sum

we have i+ j − 2m = 1
2(p+ p′ + l) = 1

2(
¯
i+

¯
j) + 1

2(
¯
i′ +

¯
j′) + 1

2 l, and still |l| ≤ |k− k′|+ 2n. This
yields, using again Cauchy-Schwarz:

S1 = C
∑

¯
i,
¯
j≥0

∑
¯
i′,

¯
j′≥0

qα(2m+l/2)(q
α
2

(
¯
i+

¯
j)‖x(

¯
i+m,

¯
j+m)‖)(q

α
2

(
¯
i′+

¯
j′)‖x′(

¯
i′+m,

¯
j′+m)‖)

≤ Cqα(2m− 1
2
|k−k′|−n)

∑
¯
i,
¯
j≥0

q
α
2

(
¯
i+

¯
j)‖x(

¯
i+m,

¯
j+m)‖

∑
¯
i′,

¯
j′≥0

q
α
2

(
¯
i′+

¯
j′)‖x′(

¯
i′+m,

¯
j′+m)‖

≤ Cqα(2m− 1
2
|k−k′|−n)‖x‖2‖x′‖2

∑
¯
i,
¯
jq
α(

¯
i+

¯
j) ≤ C ′′′Dqα(m−|k−k′|)‖ζ‖‖ζ ′‖,

with C ′′′ depending on q, n and y. �

Taking into account the finite propagation result established at the end of Section 2 we can
finally prove the following global estimate.

Theorem 4.9. Fix n ∈ N and y ∈ pnH◦ ⊂ M . Take the constant q1 given by Theorem 3.10
and assume q ≤ q1. Then for any m ≥ 10n and ζ ∈ Vm we have |(ζy | yζ)| ≤ Cqαm‖ζ‖2, where
α > 0 is a constant depending only on q, and C is a constant depending on q, n and y.

Proof. We have the orthogonal decomposition ζ =
∑

k∈N∗ ζk with ζk ∈ AWkA = H(k). Propo-
sition 2.16 shows that yζk′ decomposes into subspaces H(l) with |k′ − l| ≤ n, and similarly ζky
decomposes into subspaces H(l) with |k − l| ≤ n, so that we have ζky⊥yζk′ if |k − k′| > 2n.
Proposition 4.8 applies thank to Theorem 3.10 and the assumption on q. Thus we can write,
using Cauchy-Schwarz:

|(ζy | yζ)| ≤
∑
|k′−k|≤2n|(ζky | yζk′)| ≤ Cq

α(m−2n)∑
|k′−k|≤2n‖ζk‖‖ζk′‖

≤ Cqα(m−2n)∑
|k′−k|≤2n‖ζk‖

2 ≤ Cqαmq−2αn(4n+ 1)‖ζ‖2. �

5. Support localization

In this section we will show that for any m ∈ N, elements z ∈ A⊥∩M which almost commute
to the generator χ1 ∈ A have a small component in the subspace spanned by vectors wi,j with
i ≤ m or j ≤ m, and from this we deduce the Asymptotic Orthogonality Property for the MASA
A ⊂M .

Our strategy starts with algebraic arguments, using the constant structures for the left multi-
plication by χ1 ∈ A on the basis (wi,j), obtained at Proposition 5.1, to deduce relations between
a vector z ∈ H(w) and its commutator [χ1, z], cf. Proposition 5.5. The main analytical input
is then an estimate on coefficients appearing in these relations that we establish at Lemma 5.7,
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and which allows to establish the main result of this section, Theorem 5.9. We can then prove
Theorem A by assembling the results of the article, following Popa’s classical strategy.

The following computation of the structure constants is mainly a reformulation of Lemma 3.8
that we already used for the study of the Gram matrix. Recall Notation 2.11 for the orthonormal
family W =

⊔
k≥1Wk which spans the A,A-bimodule H◦. For w ∈ W we have the associated

vectors wi,j ∈ AwA, where i, j ∈ N. We agree to denote moreover wi,j = 0 if i < 0 or j < 0.
Finally, let us recall the definition of the coefficients A, B, C from the statement of Theorem 3.7:

Anp =
dp+kdp+k−1

dndn−1
, Bn

p = 2(−1)k Re(µ)
dp+k−1dp−1

dndn−1
, Cnp = −dp−1dp−2

dndn−1
.

They depend on p ∈ N and n ∈ N∗, but also on k ∈ N and µ ∈ C which will be fixed most of
the time. Recall moreover that we are using the convention dp = 0 for p < 0.

Proposition 5.1. Let w ∈ Wk with associated eigenvalue µ of the rotation map, and consider
the associated coefficients A, B, C. Then for any i, j ∈ N we have, with n = i+ k + j:

χ1wi,j = wi+1,j + (1−Anj )wi−1,j +Bn
j wi,j−1 + Cnj wi+1,j−2.

Proof. According to the fusion rules we have χ1wi,j = pn+1(χ1wi,j)+pn−1(χ1wi,j), and moreover
pn+1(χ1wi,j) = pn+1(χ1χiwχj) = wi+1,j because pn+1(χ1pl(χiwχj)) = 0 if l < n. We compute
the second term pn−1(χ1wi,j) in the Tannaka-Krein picture: putting w = uk(X) with X ∈
B(Hk)

◦◦, we have by (1.4):

pn−1(χ1wi,j) = (κ1,n
n−1)2 un−1(id1 ∗n−1 Xi,j).

Recall the basic intertwiner V 1,n
n−1 = (P1⊗Pn)(t⊗ idn−1)Pn−1. We have V 1,n∗

n−1 V
1,n
n−1 = (t∗ ⊗ idn−1)

(id1 ⊗ Pn)(t⊗ idn−1) = (Tr1⊗id)(Pn) = (dn/dn−1)idn−1, so that (κ1,n
n−1)2 = dn−1/dn. Moreover

we have by definition

id1 ∗n−1 Xi,j = (t∗ ⊗ idn−1)(id1 ⊗Xi,j)(t⊗ idn−1) = (Tr1⊗id)(Xi,j).

Switching left and right in Lemma 3.8 (or applying the antipode as in the proof of Corollary 4.6)
we thus obtain

(κ1,n
n−1)2(id1 ∗n−1 Xi,j) = δi>0(1−Anj )Xi−1,j + δj>0B

n
j Xi,j−1 + δj>1C

n
j Xi+1,j−2.

This yields the formula in the statement. �

Corollary 5.2. Fix w ∈Wk, assume that {wi,j | i, j ∈ N} is a Riesz basis, and take an element
z =

∑
i,j zi,jwi,j in H(w). We put moreover zi,j = 0 if i < 0 or j < 0. Writing similarly

[χ1, z] =
∑

i,j [χ1, z]i,jwi,j in H(w), we have

[χ1, z]i,j = zi−1,j − zi,j−1 +Dn+1
j zi+1,j −Dn+1

i zi,j+1 + Cn+1
j+2 zi−1,j+2 − Cn+1

i+2 zi+2,j−1,

where we take n = i+ k + j and denote Dn
j = 1−Anj −Bn

n−k−j.

Proof. The proposition gives, by summing in H(w) over i, j ∈ N:

χ1z =
∑

i,j zi,jwi+1,j +
∑

i≥1,j(1−A
i+k+j
j )zi,jwi−1,j

+
∑

j≥1,iB
i+k+j
j zi,jwi,j−1 +

∑
j≥2,iC

i+k+j
j zi,jwi+1,j−2

=
∑

i≥1,j zi−1,jwi,j +
∑

i,j(1−A
i+k+j+1
j )zi+1,jwi,j

+
∑

i,j B
i+k+j+1
j+1 zi,j+1wi,j +

∑
i≥1,j C

i+k+j+1
j+2 zi−1,j+2wi,j .

With our convention we can add the terms i = 0 in the first and last sum, and for fixed i, j ∈ N
this yields (χ1z)i,j = zi−1,j + (1−An+1

j )zi+1,j +Bn+1
j+1 zi,j+1 +Cn+1

j+2 zi−1,j+2, where n = i+ k+ j.

We also have (zχ1)j,i = zj,i−1 + (1−An+1
j )zj,i+1 +Bn+1

j+1 zj+1,i + Cn+1
j+2 zj+2,i−1 by symmetry (or

by applying the antipode). Switching i and j this reads (zχ1)i,j = zi,j−1 + (1 − An+1
i )zi,j+1 +

Bn+1
i+1 zi+1,j+C

n+1
i+2 zi+2,j−1 and a substraction yields the result, sinceDn+1

j = 1−An+1
j −Bn+1

i+1 . �
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Iterating Corollary 5.2, we shall obtain more relations between a vector z and the commutator
[χ1, z]: cf Equation (5.1) below where the case p = 1 corresponds in fact to Corollary 5.2.
For fixed m, l, the collection of relations (5.1) for varying p will yield the crucial estimate of
Theorem 5.9. The coefficients appearing in (5.1) are introduced inductively as follows.

Notation 5.3. We fix k ∈ N∗, |µ| = 1, and m ∈ N. We define families of coefficients f l,pi,j , gl,pi,j
for i, j, l, p ∈ N, and φl,pi for l, p ∈ N, i ∈ Z, by induction on p, as follows. For p = 0 we first put

f l,0i,j = δ(i,j)=(m,l) and gl,0i,j = 0 for all l, i, j ∈ N. Then assuming that f l,pi,j , gl,pi,j are constructed
for a given p and all l, i, j ∈ N we first put

φl,pi = −
i∑

s=−p
f l,pm+p−s,l+p+s

for −p ≤ i ≤ m + p and φl,pi = 0 for the other values of i ∈ Z. Then we define gl,p+1
i,j = gl,pi,j if

i+ j ≤ m+ l+ 2p− 1, gl,p+1
i,j = φl,pm+p−i if i+ j = m+ l+ 2p+ 1 and gl,p+1

i,j = 0 else. Finally we

put f l,p+1
i,j = 0 if i+ j 6= m+ l + 2p+ 2, and

f l,p+1
i,j = Dn

i φ
l,p
m+p−i −D

n
j φ

l,p
m+p−i+1 + Cni φ

l,p
m+p−i+2 − C

n
j φ

l,p
m+p−i−1

if i+ j = m+ l + 2p+ 2, with n = i+ k + j.

Remark 5.4. The last relation in fact implies also f l,p+1
i,j = 0 if i + j = m + l + 2p + 2 and

i > m+ 2p+ 2, because then m+ p− i < −p− 2. Hence f l,pi,j = 0 unless i+ j = m+ l+ 2p and

i ≤ m + 2p. By definition, one can recover the coefficients f from φ as follows: f l,pi,m+l+2p−i =

φl,pm+p−i−1−φ
l,p
m+p−i for i = 0, . . . ,m+ 2p (which for i = m+ 2p also reads f l,pm+2p,l = −φl,p−p), and

f l,pi,j = 0 if i+j 6= m+l+2p or i > m+2p. Also, we have φl,0i = −1 for 0 ≤ i ≤ m and 0 otherwise.

On the other hand, we also record the fact that gl,pi,j = 0 unless m+ l+ 1 ≤ i+ j ≤ m+ l+ 2p−1
and i+ j, m+ l + 1 have the same parity.

Proposition 5.5. Fix w ∈ Wk with associated ρ-eigenvalue µ, and m ∈ N. Assume that
{wi,j | i, j ∈ N} is a Riesz basis. For any z =

∑
i,j zi,jwi,j ∈ H(w) we have, using the coefficients

of Notation 5.3:

(5.1) ∀p ∈ N, l ∈ N zm,l =
∑
i,j∈N

f l,pi,j zi,j +
∑
i,j∈N

gl,pi,j [χ1, z]i,j .

Proof. We proceed by induction over p, noting that (5.1) holds trivially for p = 0. Assume now
that it is satisfied for some fixed p ∈ N. Using Corollary 5.2 we then write, with the convention
i′ = m+ l + 2p− i in each term of the sums:

zm,l =
∑m+2p

i=0 f l,pi,i′zi,i′ −
∑m+2p

i=0 φl,pm+p−i(zi−1,i′+1 − zi,i′)

+
∑

i,j g
l,p
i,j [χ1, z]i,j +

∑m+2p
i=0 φl,pm+p−i[χ1, z]i,i′+1

−
∑m+2p

i=0 φl,pm+p−i(D
n
i′+1zi+1,i′+1 −Dn

i zi,i′+2 + Cni′+3zi−1,i′+3 − Cni+2zi+2,i′),

where n = k + m + l + 2p + 2 = i + k + i′ + 2. By definition of the coefficients φ, the
first two sums cancel each other: indeed zi,i′ , for 0 ≤ i ≤ m + 2p, appears with the factor

φl,pm+p−i−1−φ
l,p
m+p−i = f l,pi,m+l+2p−i in the second one. The fourth sum contains exactly the terms

missing to the third one to pass from gl,pi,j to gl,p+1
i,j , so that we have

zm,l =
∑

i,j g
l,p+1
i,j [χ1, z]i,j −

∑m+2p
i=0 φl,pm+p−i(D

n
i′+1zi+1,i′+1 −Dn

i zi,i′+2

+ Cni′+3zi−1,i′+3 − Cni+2zi+2,i′)

=
∑

i,j g
l,p+1
i,j [χ1, z]i,j +

∑m+2p+2
i=0 zi,i′+2(φl,pm+p−iD

n
i − φ

l,p
m+p−i+1D

n
i′+2

+ φl,pm+p−i+2C
n
i − φ

l,p
m+p−i−1C

n
i′+2),
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still with n = k +m+ l + 2p+ 2, and using φl,pi = 0 for i < −p or i > m+ p. We recognize in

the last sum the definition of f l,p+1
i,j , with j = m+ l+ 2p− i+ 2 = i′ + 2, so that (5.1) holds for

p+ 1. �

Now the main tool to obtain Theorem 5.9, together with the relations (5.1), is an estimate
on the coefficients φ that we establish at the elementary but technical Lemma 5.7 below. First
we prove the following easy estimates on the coefficients C and D.

Lemma 5.6. For any a ∈ N, b ∈ N ∪ {−1} and k ∈ N∗ we have, putting n = a+ b+ k + 2:

|Dn
b+1 −Dn

a | ≤
3qa+b+3q−|b−a+1|

(1− q2n)(1− q2n+2)
,

|Dn
b+1| ≤ 1 +

2qn−a+b+1

(1− q2n)(1− q2n+2)
, |Cnb+1| ≤

q2n−2b

(1− q2n)(1− q2n+2)
.

Proof. We start from the identity

dn−b−2dn−b−3 − dn−a−1dn−a−2 = ±d2n−a−b−3d|b−a+1|−1.

This can be seen by a direct computation using q-numbers, or using the fusion rules as follows.
Both sides vanish if a = b + 1, according to our convention d−1 = 0 (and otherwise all indices
are in N). Assume for instance a < b+ 1. Then dn−b−2dn−b−3 (resp. dn−a−1dn−a−2) is the sum
of the dimensions dc where c is odd and ranges from 1 to 2n − 2b − 5 (resp. 2n − 2a − 3). On
the other hand the right-hand side is the sum of dimensions dc where c is odd and ranges from
2n−2b−3 to 2n−2a−3, so that the relation holds with a negative sign. The other case follows
(with a positive sign) by exchanging a and b+1. Dividing out by dndn−1 and using the estimate
q−c(1− q2c+2) = (1− q2)dc ≤ q−c we obtain

|(1−Anb+1)− (1−Ana)| =
d2n−a−b−3d|b−a+1|−1

dndn−1
≤ qa+b+3−|b−a+1|

(1− q2n+2)(1− q2n)
.

One can proceed in the same way with the constants B. By the same reasoning as above, or
by a direct computation, we have

dadn−b−2 − db+1dn−a−1 = ±dnd|b−a+1|−1,

indeed the products on the left are equal to the sum of the dimensions dc where c has the same
parity as k and ranges from k to n+a−b−2 (resp. from k to n−a+b), so that in the difference
c ranges from n + a − b to n − a + b if b > a − 1 (resp. from n − a + b + 2 to n + a − b − 2 if
b < a− 1), and we find exactly the same terms on the right. Dividing out by dndn−1 this yields

|Bn
a+1 −Bn

b+2| = 2|Reµ|
dnd|b−a+1|−1

dndn−1
≤ 2

qn−|b−a+1|

(1− q2n+2)(1− q2n)
.

Since n ≥ a + b + 3, adding this estimate and the previous one yields the first estimate of the
statement.

The other estimates are easier. We have clearly 0 ≤ Anb+1 ≤ 1, hence Dn
b+1 ≤ 1 + |Bn

a+1|, and

using again the estimates (1− q2)dc ≤ q−c we obtain

|Bn
a+1| = 2|Reµ|dadn−b−2

dndn−1
≤ 2qn−a+b+1

(1− q2n+2)(1− q2n)
.

Finally the estimate for Cnb+1 follows exactly like the one for Bn
a+1 above. �

Lemma 5.7. Assume that one can choose 3.4 < R < 0.995/(2q2). Take k ∈ N∗, |µ| = 1,

and m ∈ N. Then there exists a constant K, depending only on q and m, such that |φl,pi | ≤
Kq2|i|(2R)i for all l ≥ m, p ∈ N and −p ≤ i ≤ m+ p.

Proof. Note that the assumption implies the inequalities 6q2 < 2Rq2 < 1, and in particular
q2 < 1/6, which we will use frequently in this proof. The recursive construction of the coefficients
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f yields the following recursion relation over p for the coefficients φ. For −p− 1 ≤ i ≤ m+ p+ 1
we have, putting n = m+ l + 2p+ k + 2:

φl,p+1
i = −

i∑
s=−p−1

f l,p+1
m+p+1−s,l+p+1+s

=
i∑

s=−p−1

(φl,ps D
n
l+p+1+s − φ

l,p
s−1D

n
m+p+1−s + φl,ps−2C

n
l+p+1+s − φ

l,p
s+1C

n
m+p+1−s)

= φl,pi (Dn
l+p+1+i − Cnm+p−i+2)− φl,pi+1C

n
m+p−i+1

+
i−1∑
s=−p

φl,ps

(
Dn
l+p+1+s −Dn

m+p−s + δs≤i−2C
n
l+p+s+3 − Cnm+p−s+2

)
,

since φl,ps = 0 if s < −p.
We now combine this recursion relation with the estimates of Lemma 5.6. We still take

n = k+m+ l+ 2p+ 2 and we denote ρn = (1− q2n)−1(1− q2n+2)−1. Note that we have ρn ≤ ρt
if t ≤ n, and ρ3 < 1.005 (by comparing with the value at q2 = 0.995/6.8). Since k ≥ 1, we have
n ≥ 3, hence the estimate ρn ≤ 1.005 that we will use later in the proof. Now Lemma 5.6 gives,
for −p− 1 ≤ i ≤ m+ p+ 1:

|φl,p+1
i | ≤ |φl,pi |

(
1 + 2ρnq

n−m+l+2i+1 + ρnq
2n−2m−2p+2i−2

)
+ |φl,pi+1|ρnq

2n−2m−2p+2i

+

i−1∑
s=−p

|φl,ps | ×
(
3ρnq

m+l+2p+3−|l−m+2s+1| + ρnq
2n−2l−2p−2s−4 + ρnq

2n−2m−2p+2s−2
)
.

Observe that the sum vanishes for i = −p − 1, as well as φl,p−p−1, φl,pm+p+1 and φl,pm+p+2 by
convention. Since k ≥ 1 and l ≥ m, and using the value of n, we have the following lower
bounds for −p ≤ s ≤ i− 1:

• n−m+ l + 2i+ 1 ≥ 2(p+ i+m+ 2),
• 2n− 2m− 2p+ 2i ≥ 2(p+ i+m+ 3),
• m+ l + 2p+ 3− |l −m+ 2s+ 1| ≥ 2(p− |s|+m+ 1),
• 2n− 2l − 2p− 2s− 4 ≥ 2(p− |s|+m+ 1),
• 2n− 2m− 2p+ 2s− 2 ≥ 2(p− |s|+m+ 2).

Applying these bounds and factoring 3 + 1 + q2 ≤ 25
6 in the sum we arrive at the slightly simpler

estimate:

|φl,p+1
i | ≤ |φl,pi |

(
1 + 3ρnq

2(p+i+m+2)
)

+ |φl,pi+1|ρnq
2(p+i+m+3) + 25

6 ρn

i−1∑
s=−p

|φl,ps |q2(p−|s|+m+1).

Then we denote ψl,pi = |φl,pi |q−2|i|(2R)−i, so that our aim is now to find K such that ψl,pi ≤ K
for all l, p ∈ N, −p ≤ i ≤ m+ p. For ψ the previous estimate becomes

ψl,p+1
i ≤ ψl,pi

(
1 + 3ρnq

2(p+i+m+2)
)

+ ψl,pi+1ρn2Rq2(p+i+m+2) + 25
6 ρnq

2(p−|i|+m+1)
i−1∑
s=−p

(2R)s−iψl,ps ,

where we have used |i + 1| − |i| ≥ −1 in the second term. Let us denote Kr = (6q2)−m ×∏r−1
t=0 (1 + q2t), which is increasing with r and starts with K0 = (6q2)−m. We will prove, for

each l ≥ m by induction on p, the following estimate:

(Hp) ∀i ∈ {−p, . . . , p+m} ψl,pi ≤ Kp+m−|i|.

For p = 0 and 0 ≤ i ≤ m we have indeed φl,pi = −1, hence ψl,pi = (2Rq2)−i ≤ (6q2)−m ≤ Km−|i|.
Assume now that the estimates hold for a fixed p ∈ N, and let us establish them at p + 1.



32 ROLAND VERGNIOUX AND XUMIN WANG

Together with (Hp), our recursive estimate on ψ yields, for −p− 1 ≤ i ≤ m+ p+ 1:

ψl,p+1
i ≤ δ−p≤i≤p+mKp+m−|i|

(
1 + 3ρnq

2(p+i+m+2)
)

+ δi≤p+m−1Kp+m−|i+1|ρn2Rq2(p+i+m+2)

+ 25
6 ρnq

2(p−|i|+m+1)
i−1∑
s=−p

(2R)s−iKp+m−|s|.(5.2)

Consider first i = −p − 1. The above estimate reads in this case ψl,p+1
−p−1 ≤ Kmρn2Rq2(m+1).

Since 2Rq2 < 0.995 and ρn ≤ 1.005, we obtain ψl,p+1
−p−1 ≤ Km as needed.

Then we consider the case −p ≤ i ≤ −1. For s ≤ i we have Kp+m−|s| = Kp+m+s ≤ Kp+m−|i|.

Moreover we have Kp+m−|i+1|2Rq
4 = Kp+m−|i|(1+q2(p+m+i))2Rq4 ≤ 1

3Kp+m−|i| because 2Rq2 <

1 and q2(1 + q2(p+m+i)) ≤ 2q2 ≤ 1
3 . Hence (5.2) yields

ψl,p+1
i ≤ Kp+m−|i|

(
1 + 3

36ρnq
2(p+i+m) + 1

3ρnq
2(p+i+m) + 25

36ρnq
2(p−|i|+m)∑i−1

s=−∞(2R)s−i
)

≤ Kp+m−|i|
(
1 + 5

12ρnq
2(p+i+m) + 25

36ρnq
2(p+m−|i|)/(2R− 1)

)
≤ Kp+m−|i|

(
1 + 5

9ρnq
2(p+m−|i|)) ≤ Kp+m−|i|

(
1 + q2(p+m−|i|)) = Kp+1+m−|i|,

where we used 2R− 1 ≥ 5 and ρn ≤ 9
5 .

Now we consider the case 0 ≤ i ≤ p + m. Let us observe that for any t ∈ N we have
(1 + q2t)/2 ≤ 1, hence 2−t

∏t−1
r=0(1 + q2r) ≤ 1. Then for |s| ≤ i we can write Kp+m−|s|2

s−i =

Kp+m−i2
s−i∏p+m−|s|−1

t=p+m−i (1+q2t) ≤ Kp+m−i2
|s|−i∏i−|s|−1

r=0 (1+q2r) ≤ Kp+m−i. On the other hand

for s ≤ −i we clearly have Kp+m−|s| ≤ Kp+m−i (and 2s−i ≤ 1). Using this, our estimate (5.2)
thus yields

ψl,p+1
i ≤ Kp+m−i

(
1 + 3ρnq

2(p+i+m+2) + ρn2Rq2(p+i+m+2) + 25
6 ρnq

2(p−i+m+1)∑i−1
s=−pR

s−i)
≤ Kp+m−i

(
1 + q2(p−i+m)

(
3
36ρn + 1

6ρn + 25
36ρn/(R− 1)

))
≤ Kp+m−i(1 + 43

72ρnq
2(p+m−i)) ≤ Kp+m−i(1 + q2(p+m−i)) = Kp+1+m−i,

where we used 2Rq2 < 1, q2 ≤ 1
6 , then R− 1 ≥ 2 and ρn ≤ 72

43 .
Finally when i = p + m + 1 the first two terms in the estimate (5.2) vanish and we are left

with the sum which can be dealt with as before:

ψl,p+1
p+m+1 ≤ 25

6 ρn
∑p+m

s=−p(2R)s−p−m−1Kp+m−|s|

≤ 25
6 K0ρn

∑p+m
s=−pR

s−p−m−12−1 ≤ 25
6 K0ρn/(2(R− 1)) ≤ K0,

since R ≥ 3.4 and ρn ≤ 1.1. This is the required estimate to conclude the proof of (Hp+1).
We have now proved by induction that (Hp) holds for all p ∈ N. Moreover we have Kr ≤

K := lims→∞Ks for all r ∈ N, with K < +∞ because q < 1. Hence the lemma is proved. �

Notation 5.8. We consider the following non-orthogonal projections Em, Qm defined as follows:
for all w ∈W , i, j ∈ N

Em(wi,j) = wi,j if i ≥ m and j ≥ m, 0 otherwise ;

Qm(wi,j) = wi,j if j ≥ i = m, 0 otherwise.

Observe that if {wi,j | w ∈W, i, j ∈ N} is a Riesz basis, these projections extend to idempotents
in B(H◦), and the range of Em is the subspace Vm from Notation 4.1.

Theorem 5.9. Assume that {wi,j | w ∈ W, i, j ∈ N} is a Riesz basis and that N ≥ 3. Then
there exist constants Lm such that we have, for any p ∈ N∗, m ∈ N and z ∈ H◦:

‖(1− Em)z‖22 ≤ Lmp−1‖z‖22 + Lmp‖[χ1, z]‖22.

Proof. Note that for N = 3 we have q−2 = 1
2(N2 +N

√
N2 − 4− 2) ' 6.854, so that for N ≥ 3

we have q−2 > 6.85 and 0.995/(2q2) > 3.4. As a result we can find a number R such as in the
hypothesis of Lemma 5.7. To start with, we deduce from that lemma estimates on various sums
of coefficients f and g. For each m we denote Km the constant provided by the lemma.
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Recall that f l,pi,j vanishes except for the following entries: f l,pm+p−i,l+p+i = φl,pi−1 − φl,pi with

−p ≤ i ≤ p+m, and the convention φl,p−p−1 = 0. Thus for fixed l ≥ m and p we have
∑

i,j |f
l,p
i,j | ≤

2
∑p+m

i=−p |φ
l,p
i |. As a result Lemma 5.7 yields

∑
i,j |f

l,p
i,j | ≤ 2KmS with S =

∑+∞
i=−∞ q

2|i|(2R)i,

which is finite because 2Rq2 < 1 and q2/2R < q2/6 < 1 by choice of R. In the same way for

fixed i, j we have f l,pi,j = 0 unless i+ j ≥ m and l ≥ m, p ∈ N satisfy l = i+ j −m− 2p. Thus
we obtain, putting r = p+m− i, the same upper bound for the sum over l and p:∑

p,l≥m
|f l,pi,j | =

b(i+j)/2−mc∑
p=0

∣∣φi+j−m−2p,p
m+p−i − φi+j−m−2p,p

m+p−i−1

∣∣
=

b(j−i)/2c∑
r=m−i

∣∣φm+j−i−2r,r+i−m
r − φm+j−i−2r,r+i−m

r−1

∣∣≤ 2KmS.

On the other hand, recall that if gl,pi,j 6= 0 then there exists 0 ≤ r ≤ p − 1 such that i + j =

m+ l + 2r + 1, and then gl,pi,j = φl,rr+m−i. Hence for fixed l ≥ m and p we have

∑
i,j

|gl,pi,j | ≤
p−1∑
r=0

m+l+2r+1∑
i=0

|φl,rr+m−i| ≤
p−1∑
r=0

+∞∑
i=−∞

|φl,ri | ≤ pKmS.

Similarly, for fixed i, j, p we have
∑

l≥m |g
l,p
i,j | =

∑ρ
r=0 |φ

i+j−m−2r−1,r
r+m−i | where ρ = min(p − 1,

b(i+ j − 1)/2c −m), hence once again
∑

l≥m |g
l,p
i,j | ≤ KmS.

Now we can proceed to the main part of the proof. We start by Qm instead of 1 − Em.
By decomposing H◦ into the pairwise orthogonal sub-bimodules H(w) we can assume that z
belongs to H(w) for some w — indeed Qm and the commutator with χ1 commute with the
projections onto these submodules. Since (wi,j) is a Riesz basis we can replace ‖Qmz‖22 with∑

l≥m |zm,l|2, ‖z‖22 with
∑

i,j |zi,j |2 and ‖[χ1, z]‖22 with
∑

i,j |[χ1, z]i,j |2. Then for any fixed p we
have the following estimates, using Proposition 5.5 and Cauchy-Schwartz:∑

l≥m
|zm,l|2 =

∑
l≥m

∣∣∣∑
i,j

f l,pi,j zi,j +
∑
i,j

gl,pi,j [χ1, z]i,j

∣∣∣2
≤ 2

∑
l≥m

∣∣∣∑
i,j

f l,pi,j zi,j

∣∣∣2 + 2
∑
l≥m

∣∣∣∑
i,j

gl,pi,j [χ1, z]i,j

∣∣∣2
≤ 2

∑
l≥m

∑
i,j

|f l,pi,j |
∑
i,j

|f l,pi,j z
2
i,j |+ 2

∑
l≥m

∑
i,j

|gl,pi,j |
∑
i,j

|gl,pi,j [χ1, z]
2
i,j |

≤ 4KmS
∑

l≥m,i,j
|f l,pi,j z

2
i,j |+ 2pKmS

∑
i,j

|[χ1, z]i,j |2
∑
l≥m
|gl,pi,j |

≤ 4KmS
∑

l≥m,i,j
|f l,pi,j z

2
i,j |+ 2pK2

mS
2
∑
i,j

|[χ1, z]i,j |2.

Then we take the average of these inequalities over p = 0, . . . , r − 1:∑
l≥m
|zm,l|2 ≤

4KmS

r

∑
i,j

|z2
i,j |

∑
p<r,l≥m

|f l,pi,j |+
2K2

mS
2

r

∑
p<r

p
∑
i,j

|[χ1, z]i,j |2,

≤ 8K2
mS

2

r

∑
i,j

|zi,j |2 + rK2
mS

2
∑
i,j

|[χ1, z]i,j |2.

It is then easy to upgrade this estimate from Qm to 1 − En. First of all by symmetry we have
the same estimate for the sum of |zl,m|2 over l > m, for fixed m. Then for fixed n we put

Ln =
∑n−1

m=0K
2
m, and by summing over 0 ≤ m ≤ n− 1 we obtain for all r:∑
l<n or m<n

|zm,l|2 ≤ 16LnS
2r−1

∑
i,j

|zi,j |2 + 2LnS
2r
∑
i,j

|[χ1, z]i,j |2.
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This gives the required estimate by the Riesz basis property. �

Proof of Theorem A. Take the constant q1 provided by Theorem 3.10, and N0 ∈ N, N0 ≥ 3,
such that the associated constant q0 satisfies q0 < q1. Then for N ≥ N0 we have q < q1, so that
{wi,j | w ∈W, i, j ∈ N} is a Riesz basis.

To prove the AOP, take elements zr ∈ A⊥ ∩M such that ‖zr‖ ≤ 1 and ‖[χ1, zr]‖2 →ω 0. We
want to prove that (yzr | zry)→ω 0 for any y ∈ A⊥ ∩M . By Kaplansky’s density theorem and
linearity, we can assume that y ∈ pnH◦ ∩M for some fixed n ∈ N∗, with ‖y‖ ≤ 1. Now for any
m ∈ N we can write

|(yzr | zry)| ≤ |(yEm(zr) | Em(zr)y)|+ ‖(1− Em)(zr)‖2(‖zr‖2 + ‖Em(zr)‖2).

We apply our Theorem 4.9 to ζ = Em(zr), obtaining |(yEm(zr) | Em(zr)y)| ≤ Cqαm‖Em(zr)‖22
for m ≥ 10n. The projections Em are not orthogonal, but since (wi,j)w,i,j is a Riesz basis they
are bounded independently of m. Thus we get

|(yzr | zry)| ≤ Cqαm + C‖(1− Em)(zr)‖2.

for some new constant C independent of m and r. We now take ε > 0 and choose a fixed
m ≥ 10n such that Cqαm ≤ ε/2. Then we apply Theorem 5.9: for all p ∈ N∗ and r we have

‖(1− Em)(zr)‖22 ≤ Lmp−1 + Lmp‖[χ1, zr]‖22.

We choose p such that Lmp
−1 ≤ ε2/8C2. Finally by assumption for ω-almost all r we have

‖[χ1, zr]‖22 ≤ ε2/8C2Lmp. The above estimates then show that for the same r’s we have
|(yzr | zry)| ≤ ε, and this concludes the proof of the AOP. �

Acknowledgments. The authors wish to thank the anonymous referee for the careful read-
ing of this article. R.V. and X.W. were partially supported by the french Agence Nationale
de la Recherche (grant ANR-19-CE40-0002). X.W. was partially supported by the CEFIPRA
project 6101-1, the National Research Foundation of Korea (grants NRF-2022R1A2C1092320
and NRF-2020R1C1C1A01009681), and the National Natural Science Foundation of China
(grants No. 12031004 and No. W2441002).

References
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