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0. Introduction : la premiére moitié de I’exposé sera consacrée & des rappels sur les
groupes quantiques discrets et les graphes de Cayley. On expliquera alors les motiva-
tions aux constructions et résultats de la deuxiéme partie, qui portera sur l’introduc-
tion et I’étude des graphes de Cayley quantiques, notamment dans le cas des arbres.
Voici le plan détaillé :

(a) Rappels
— groupes quantiques compacts
— le cas co-commutatif
— groupes quantiques libres
— graphe de Cayley (groupes discrets)

(b) Graphes de Cayley quantiques
— graphe de Cayley (groupe quantiques discrets)
— orientation (cas des arbres)

opérateur de Julg-Valette

— espace Ho, pour A,(Q)

1. Groupes quantiques compacts

— On a (au moins) trois cadres axiomatiques pour la théorie des groupes quantiques
compacts, due initialement & Woronowicz. La formulation la plus simple se fait
en termes de C'*-algébres : les objets étudiés sont les C*-algébres de Woronowicz,
c’est & dire les C*-algébres de Hopf uniféres et bisimplifiables.

— La théorie des représentations des groupes compacts se généralise avec la notion de
coreprésentation des groupes quantiques compacts. On a une définition trés simple
en dimension finie : rappeler la notation des indices pour les produits tensoriels.
La théorie est tout-a-fait analogue & celle des groupes compacts : on a des notions
de morphisme d’entrelacement, somme directe, produit tensoriel, conjugaison. On
notera C la catégorie des coreprésentations de dimension finie de (S,d). On a un
théoréme de Peter-Weyl dans ce cadre : les coreprésentations se décomposent en
sommes directes de coreprésentations irréductibles. On notera Irr C un systéme
complet de représentants des coreprésentations irréductibles. Les éléments de Irr C
qui sont de dimension 1 sont appelés caractéres et forment un groupe (pour la loi
induite par le produit tensoriel). Exemple : si S est ’algébre des fonctions sur un
groupe compact abélien, le groupe des caractéres est un groupe discret abélien, et
on obtient ainsi tous les groupes discrets abéliens (dualité de Pontrjagin).

— Plusieurs objets hilbertiens interviennent également dans la théorie. Un résultat
central est I’existence d’un état de Haar pour (S,d). On note H ’espace L? corres-
pondant, et A la représentation GNS de S sur H. Cette derniére n’est pas fidéle en
général, on note S, son image : c’est la version « réduite » de S (le coproduit de
S passe au quotient). On a une décomposition de H en sous-espaces de dimension
finie associés aux éléments de Irr C, on notera p, les projecteurs orthogonaux cor-
respondants. Enfin, d’autres objets hilbertiens permettent de décrire entiérement
le groupe quantique compact considéré, pour former le systéme de Kac (H,V,U)
associé a (S, d). On se contentera ici d’expliquer & quoi correspondent ces objets
dans le cas des groupes discrets.

2. Le cas co-commutatif
— On explique maintenant comment associer & un groupe discret quelconque (non
abélien) un groupe quantique compact, que l'on peut considérer comme son dual



de Pontrjagin généralisé. Soit I' un groupe discret, on note CI" 1’algébre involutive
associée. En tant qu’espace vectoriel, une base en est donnée par les éléments de
I'. La structure d’algébre involutive est donnée, sur cette base, par la loi de I' et
Pinverse de I'. Il y a diverse maniére de compléter cette algeébre involutive en une
C*-algébre : on notera C*I" la complétion « universelle » ou « pleine », au sens ol
toutes les représentation unitaires de I" s’étendent en une représentation de C*I'. La
norme correspondante peut étre donnée par la formule ||a|| = Sup, [|7(a)||z(#,),
ol on étend les représentations unitaires 7 de I' & CI' entier, par linéarité. On fait
de C*TI" une C*-algébre de Woronowicz en définissant le coproduit par une formule
trés simple sur la base canonique de CT'.

— On peut alors décrire les objets de la théorie en fonction de I'. Le groupe des
caractéres forme un systéme complet de représentants des coreprésentations irré-
ductibles, et il s’identifie au groupe I' lui-méme : en passant des groupes compacts
aux groupes quantiques compacts, on permet aux groupes de caractéres de devenir
non abéliens. L’espace de Hilbert H s’identifie & £2(I"), et A est appelée représen-
tation réguliére de I' : elle provient de ’action par translation a gauche de T' sur
lui-méme. La C*-algébre C;T' := S, est une autre complétion importante de CT',
dite « réduite » : elle est donnée par la norme ||a||, = [|A(a)||r(z)- Les sous-espaces
pr(H), pour r € T, sont les droites engendrées par les fonctions caractéristiques
des points de I'. Enfin, les unitaires U et V sont donnés par des formules simples
en fonction de la structure du groupe I' (noter que HQH ~ £?(T" x T)).

— Dans le cas général d'un groupe quantique compact, on considérera donc dans
la suite S comme la C*-algébre pleine d’'un groupe quantique discret. Parfois il
sera utile de penser aux éléments r € Irr C comme aux « points » de ce groupe
quantique discret. Si D est une partie de Irr C, le projecteur somme des p, pour
r € D est 'analogue quantique du projecteur sur le sous-espace £2(D) C £2(T)
(écrire cette inclusion).

3. Groupes quantiques libres

— Le groupe libre F), est engendré par n générateurs sans relations, sa C*-algébre
pleine est donc la C*-algébre engendrée par n générateurs u; et les relations « mi-
nimales », ie celles qui rendent les u; unitaires. Je vous laisse imaginer ce que
peut étre une C*-algébre engendrée par des générateurs et des relations, le point
important est que les relations doivent imposer une borne aux générateurs. Les
C*-algébres de Woronowicz « libres » sont définies de méme par des générateurs
et des relations « minimales ».

~ Groupe quantique libre A,(Q) : les n? générateurs u;; forment une matrice u
et on demande qu’elle soit unitaire, ainsi que la matrice conjuguée @ (dans le
cadre non commutatif la premiére condition n’implique pas la deuxiéme). On peut
introduire un paramétre Q € GL,(C) pour déformer la deuxiéme condition. On
obtient ainsi une C*-algébre de Woronowicz, avec un coproduit tel que w soit une
coreprésentation de A,(Q) (Wang, van Daele). On a une version « orthogonale »,
Ao(Q), pour laquelle on demande que QuQ ™! soit égale & u.

— La théorie des coreprésentations a été étudiée par Banica. Pour A,(Q), on peut
indexer Irr C par les mots en u et 4, de maniére & avoir les régles de fusion et de
conjugaison indiquées sur le transparent. Pour A,(Q), si on suppose que QQ est
scalaire, on peut indexer Irr C par N de maniére & avoir les méme régles de fusion
et de conjugaison que pour SU(2). Notons d’ailleurs que dans le cas n = 2 on
retrouve les groupes quantiques compact SU,(2) de Woronowicz.

4. Graphes de Cayley classiques

— Enumeérer les données. A s’interpréte comme 1’ensemble des directions suivies par
les arétes. On a deux visions équivalentes. Dans les deux cas I’ensemble des sommets



est I' lui-méme.

— Vision simpliciale : une aréte est un couple (r,7') de sommets tel que r’ = rs pour
un certain s € A. On peut retourner les arétes, et on dispose donc des notions
d’orientation et d’arétes géométriques.

— Vision « origine + direction » : une aréte est simplement la donnée d’un point de
départ dans I' et d’une direction dans A. On retrouve la vision précédente grace
a des applications origine et but. L’application de retournement se lit de maniére
particuliére dans cette nouvelle formulation.

— Exemple : graphe de Z/3Z x Z/2Z, de F, (figure). Arétes sans fleches : géomé-
triques. Sur ’arbre du groupe libre on a mis une fléche sur chaque aréte géométrique
pour obtenir 'orientation « montante » de l'arbre relativement & l'origine e : les
arétes orientées s’éloignent de cette origine.

0. Motivations

— Je vais expliquer rapidement comment la situation géométrique, trés simple, de
I’arbre du groupe libre, donne lieu & une construction intéressante pour 1’étude
du groupe libre, et plus particuliérement de la K-théorie de ses C*-algébres. Ce
n’est pas du tout ’objet de ’énoncé de parler de K K-théorie, mais je vais quand
méme dire deux mots de la démarche. Si un groupe discret I' agit sur deux C*-
algeébres A et B, KKr(A, B) est un groupe abélien, invariant par homotopie G-
équivariante, qui contient des informations intéressantes sur A, B et le groupe I’
(par exemple sur les séries discrétes). On dispose de nombreux outils pour étudier
ce groupe, et notamment du produit de Kasparov, de KKr(A,D) x KKr(D, B)
dans KKr(A, B). Ainsi un simple élément de K K-théorie induit des morphismes
entre groupes de K K-théorie. Une démarche fréquente est alors la construction
d’éléments particuliérement intéressants de ce point de vue, par exemple pour
obtenir des isomorphismes. Cela se fait souvent par des méthodes géométriques,
comme celle que je vais vous décrire maintenant.

— On procéde comme suit : étend donnée une aréte géométrique, on choisit ’orienta-
tion qui s’éloigne de l’origine, puis on prend le sommet but pour cette orientation.
Cela revient & choisir pour chaque aréte géométrique le sommet le plus éloigné de
l'origine. 11 est évident que cela définit une application injective qui atteint tous
les sommets sauf l'origine. En outre le groupe libre agit sur son graphe de Cayley
par translation & gauche : en fait I’action d’un élément du groupe libre sur I'arbre
équivaut a un changement d’origine dans cet arbre. Cela ne modifie ’application
précédemment décrite que sur les arétes qui relient ’ancienne origine 4 la nouvelle,
or ces arétes sont en nombre fini. Si on se place au niveau #2, on a ainsi obtenu un
opérateur F de 'espace £? des arétes géométriques vers ’espace £2 des sommets,
qui est injectif, dont 'image est de codimension 1, et qui commute & l'action du
groupe libre modulo des opérateurs compacts. C’est exactement ce qu'il faut pour
définir un élément v € K Kg, (C,C).

— Dans la suite de I’exposé, on va définir la notion de graphe de Cayley pour les
groupes quantiques discrets, construire ’'opérateur de Julg-Valette correspondant
dans le cas des groupes quantiques libres, puis 1'utiliser pour définir un élément
de K K-théorie vy pour les groupes quantiques libres. Notons que dans le cas clas-
sique 1’élément vy précédemment décrit se généralise & d’autres groupes discrets, il
intervient alors dans la preuve de la conjecture de Baum-Connes pour ces groupes.
Par ailleurs les graphes de Cayley sont des objets qui ont un intérét propre, par
exemple en lien avec la notion de groupe hyperbolique.

5. Graphes de Cayley quantiques
— Les données : groupes quantiques discrets (divers objets associés), projecteur cen-
tral de S qui s’écrit comme somme de projecteurs centraux minimaux p, sur un



sous-ensemble fini D de C. Conditions sur p; analogues de celles sur A.

— On généralise la version simpliciale du graphe de Cayley de maniére naive. On
obtient un graphe classique, en remplacant 1’égalité ' = rs par une inclusion
r" C r®s. Grace a la dualité de Jacobi, on a une application de retournement bien
définie, on peut donc parler d’orientation et d’arétes géométriques. Spécificités
quantiques : on peut avoir ' C r®s et ' C r®s’, avec de la multiplicité. Pour
garder une trace de ces phénoménes, on munit les arétes d’une couleur (& valeurs
dans A) et d’une multiplicite.

— On généralise la vision « origine + direction » au niveau des espaces £2, dans 1’esprit
de la géométrie non commutative. Le sous-espace p1 H est la somme des p,H avec
r € D et s’interpréte comme ’espace #o des directions : on pose K = HQp1H.
On définit un opérateur de retournement des arétes par la formule indiquée sur le
transparent, qui est en fait une généralisation naturelle de la formule algébrique
O(f)(r,s) = f(rs,s 1). Une fois © défini, on dispose d’un sous-espace des arétes
géomeétriques naturel K, qui est le noyau de © —id. A la différence du cas classique,
© n’est plus involutif en général, ce qui signifie que lorsqu’on retourne deux fois
une aréte on ne retombe pas forcément sur l'aréte de départ. C’est la principale
nouveauté du cas quantique, comme on le verra dans la suite.

— Par ailleurs le role de l'opérateur extrémités, ie du couple (origine, but), est joué
par l'unitaire multiplicatif V lui-méme. On en déduit des opérateurs origine et
but en tuant une des deux composantes & 'arrivée & ’aide d’une forme linéaire
naturelle e. Dans le cas d’un groupe discret on retrouve son gaphe de Cayley, vu
au niveau des espaces ¢2, et dans le cas général B, O et © vérifient des relations
analogues & celles du cas classique.

— Le graphe quantique est muni de représentations du groupe quantique discret. Par
définition, S, agit sur H, et on la fait agir sur le premier facteur de K. Alors O,
O et B commutent & Sy, et en particulier S, agit sur K . Ce sont ces actions qui
font du graphe quantique 1’objet le plus intéressant pour la K K-théorie. Le graphe
classique servira plutét d’auxiliaire pour ’étude du graphe quantique.

— Exemple : graphe classique de 4,(Q), 4,(Q) (figure).

6. Orientation (cas des arbres)

— On suppose maintenant que le graphe classique associé & (V,p1) est un arbre, et
on choisit la représentation triviale 1¢ comme origine. On appelle a ’orientation
des « arétes montantes », ie des arétes qui s’éloignent de l’origine. On suppose de
plus que les arétes n’ont pas de multiplicité, et que les arétes montantes issues d’un
sommet sont de couleurs différentes.

— On souhaite définir I’analogue du sous-espace des arétes montantes dans 1’espace
des arétes quantiques. Pour ce faire, on pense au projecteur p, comme au projecteur
« sur le point 7 » dans l'espace £? des sommets. En sommant sur les points r &
distance k de l’origine du graphe classique, on obtient le projecteur py sur le sous-
espace quantique « des sommets & distance k& de l’origine ». Pour obtenir un
candidat pour le projecteur sur le sous-espace des arétes montantes, on somme les
projecteurs p,®p,» avec (r,r') € ay, puis on conjugue par 'opérateur extrémités V
pour revenir dans la vision « origine + direction ». On appelle p,, ce projecteur,
et py_ son complémentaire (arétes descendantes).

— Quand on retourne le projecteur sur les arétes descendantes, on obtient un nou-
veau projecteur, différent de p,,. On l’appelle p,,. Par ailleurs on a une relation
entre © et p,, (resp. entre ©* et p,,) qui correspond au fait que lorsqu’on re-
tourne une aréte montante démarrant a distance k de l'origine, on obtient une
aréte descendante démarrant & distance k + 1 de l'origine.

— Finalement on choisit comme projecteur p,, sur les arétes montantes le produit



de p 4 et p.y, et on note K, son image. De méme on note p,_ = p,yPy_, qui
correspond en quelque sorte & des arétes a la fois montantes et descendantes. Dans
le cas classique p,_ et p_, sont nuls.

7. Opérateur de Julg-Valette

— On définit I'opérateur de Julg-Valette par analogie avec le cas classique : choix de
I’orientation montante, puis but de ’aréte orientée obtenue. La principale question
pour la suite de 'exposé sera de déterminer si Fj est un opérateur de Fredholm,
c’est-a-dire si son noyau et sa co-image sont de dimension finie.

— On obtient dans un premier temps les résultats énoncés dans le théoréme. Pour
la « seconde étape » de l'opérateur de Julg-Valette (prendre le but des arétes
montantes), tout se passe comme dans le cas classique : la restriction de B a K,
est injective et atteint tout ’espace des sommets, sauf la droite correspondant
a Porigine du graphe. Pour la premiére étape (choix de l'orientation montante),
les choses sont plus compliquées : on a & nouveau l'injectivité, mais on n’obtient
qu’une expression relativement compliquée pour p, K.

— Pour rendre ce résultat utilisable, il faut étudier plus en détail les opérateurs
p+_Op, . et p,_Op,_. Notons que p,_Op, _ agit comme une sorte de shift sur ’es-
pace des arétes : d’apreés le lien entre les projecteurs d’orientation et l'opérateur de
retournement fait au transparent précédent, il envoie (pr®p1)K sur (pr+1®p1)K,
pour tout k. Cependant c’est a priori un shift avec des poids, sur lesquels on n’a
pour l'instant aucun renseignement.

— Pour pouvoir faire des calculs plus précis, on va se placer dans le cas du groupe
quantique libre orthogonal A,(Q). En fait on peut voir que c’est le seul cas a étudier
si on veut comprendre les particularités du cas quantique. On a notamment une
proposition qui affirme que, sous les hypothéses faites sur le graphe de Cayley
classique, le graphe quantique discret considéré est en fait un produit libre de
groupes quantiques libres.

8. Espace Hy, pour A,(Q)

— Au prix de calculs assez fins dans la catégorie des coreprésentations de dimension
finie de A,(Q), on peut constater les poids du shift p,_Op,_(pr®id) tendent rapi-
dement vers 1 lorsque k tend vers l'infini. 1l est alors naturel d’introduire la limite
inductive Hy, des (pr®id) K, _ relativement a ce shift. Notons que la dimension
croit & chaque étage du systéme inductif, contrairement & ce qui se passe dans le
cas classique, si bien que Hy, est de dimension infinie.

— On peut alors construire un opérateur borné et surjectif R : K, — Hy, de
maniére naturelle mais non explicitée ici, dont le noyau correspond exactement a
p++Ky. Autrement dit, son adjoint R* est injectif et a pour image 1’orthogonal
de p, K,. Ainsi Fj a une image de codimension infinie (naturellement isomorphe
a Hoo @ poH) : ce n’est pas un opérateur de Fredholm. Mais la proposition dit
également ce qu’il faut faire pour remédier & cette situation : en rajoutant BR* &
Fy, on obtient un opérateur de Fredholm de K, @ Hy, dans H.

— Pour obtenir un élément de K K-théorie, il faut de plus étudier la commutation de
cet opérateur aux représentations du groupe quantique discret, et en premier lieu
définir une telle représentation sur ’espace H, de maniére naturelle. Cela dépasse
le cadre de cet exposé. A nouveau, les choses se passent moins bien que dans le
cas classique, mais on arrive finalement & établir les propriétés de commutation
modulo les compacts qui permettent de définir un élément v € KK ¢(C,C).



