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Introduction
L’objectif de cet exposé est de démontrer le théorème suivant :

Théorème 0.1 Soit Γ = Γ1 × Γ2 un produit cartésien de deux groupes libres non abéliens.
Soit Λ = Λ1×Λ2 un produit cartésien de deux groupes sans torsion quelconques. Soit X un Γ-
espace de probabilité libre quelconque, et Y un Γ-espace de probabilité libre tel que les actions
Y 	 Λi sont ergodiques. Si les actions X 	 Γ et Y 	 Λ sont orbitalement équivalentes, alors
il existe des isomorphismes Γi ' Λi à permutation près de Λ1 et Λ2, et l’équivalence orbitale
est induite par un isomorphisme des actions.

On peut remplacer les groupes libres par des groupes bien plus généraux, vérifiant des condi-
tions de « courbure négative ». En fait on a juste besoin d’avoir des groupes de cohomologie
bornée H2

b (Γi, Vi) non nuls, avec Vi une représentation unitaire et c0. Cela est vérifié en
particulier par les groupes non élémentaires agissant proprement sur des espaces CAT (−1)
propres ou des graphes hyperboliques à valence bornée.

La preuve fait intervenir des méthodes de théorie ergodique et des outils de cohomolo-
gie bornée. En ce qui concerne la première catégorie on parlera notamment d’équivalence
mesurable de groupes. En ce qui concerne la seconde, on a besoin d’une formule pour la co-
homologie d’un produit cartésien, et d’un résultat d’injectivité pour l’application d’induction
en cohomologie. La démonstration de ces résultats de cohomologie bornée utilise de manière
essentielle l’existence d’une frontière forte pour les groupes considérés, qui est un résultat
de théorie ergodique. Enfin, par des méthodes de théorie ergodique on peut transformer le
théorème de rigidité forte énoncé ci-dessus en un théorème de superrigidité.

1 Équivalence mesurable et rigidité
Dans tout l’exposé les groupes considérés sont discrets et dénombrables. Si Γ agit sur deux

espaces X et Y , alors on munit tout espace de fonctions de X vers Y de l’action « naturelle »
donnée par (γf)(x) = γf(γ−1x), sauf précision contraire. On note par ailleurs XΓ l’ensemble
des points fixes de X 	 Γ.

1.1 Ergodicité et équivalence orbitale
On adopte la terminologie suivante :

Définition 1.1 Un Γ-espace X 	 Γ est un espace borélien standard muni d’une action
mesurable de Γ et d’une mesure invariante et σ-finie. Un Γ-morphisme entre Γ-espaces est
une application mesurable définie presque partout qui conserve la mesure et entrelace les
actions. Un Γ-espace de probabilité est un Γ-espace de mesure 1. On dit que X 	 Γ est
libre si l’action de Γ est essentiellement libre : StabΓ(x) = {1} presque partout. On dit que
X 	 Γ est ergodique si L∞(X)Γ = C. On dit que X 	 Γ et Y 	 Λ sont orbitalement
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équivalents s’il existe un Γ-isomorphisme F : X → Y tel que F (Γx) = ΛF (x) presque
partout ; une telle application F est alors appelée équivalence orbitale. On dit que X 	 Γ et
Y 	 Λ sont isomorphes s’il existe des (Γ-)isomorphismes ϕ : Γ → Λ et F : X → Y tels que
F (γx) = ϕ(γ)F (x) pour tout γ ∈ Γ et presque tout x ∈ X.

On a le résultat suivant, qui ne sera pas utilisé dans la suite : si X 	 Γ, Y 	 Γ sont ergodiques
et F : X → Y est un Γ-quasi-isomorphisme, alors f préserve automatique la mesure, donc
est un isomorphisme. Nous aurons besoin du lemme suivant, dans lequel l’hypothèse de
séparabilité — c’est-à-dire l’existence d’une famille dénombrable de boréliens qui sépare les
points — est essentielle.

Lemme 1.2
1. Soit X un Γ-espace ergodique et Ȳ un espace mesurable séparable, muni de l’action

triviale de Γ. Alors l’espace des classes de fonctions invariantes L(X, Ȳ )Γ est réduit
aux classes de fonctions constantes.

2. Soit Y un espace topologique polonais sur lequel Γ agit continûment. Si les orbites de
Y 	 Γ sont localement fermées alors l’espace mesurable quotient Ȳ est séparable.

Démonstration.
1. Fixons une suite de boréliens de Y qui sépare les points, et soit fi : Y → {0, 1}

les fonctions caractéristiques correspondantes : l’application (fi) réalise un isomorphisme
mesurable entre Y et un borélien de {0, 1}N. Maintenant, si f : X → Y ' {0, 1}N est
invariante, ses composantes le sont aussi, donc chacune est constante presque partout. Comme
une réunion dénombrable de boréliens négligeables est négligeable, f est constante presque
partout.

2. Comme Y a une topologie à base dénombrable, c’est aussi le cas de Ȳ . Cependant
Ȳ n’est pas Haussdorf en général. On va montrer une propriété plus faible, qui suffit pour
avoir le résultat recherché sur la structure borélienne : Ȳ est T0, c’est-à-dire que pour tous
ȳ1 6= ȳ2 ∈ Ȳ il existe un ouvert Ū ⊂ Ȳ tel que ȳ1 ∈ Ū et ȳ2 /∈ Ū , à permutation de y1

et y2 près. Supposons que ȳ1, ȳ2 ne vérifient pas cette propriété : alors on a Γy1 ⊂ Γy2 et
Γy2 ⊂ Γy1, donc Γy1 est dense dans Γy2. Mais par hypothèse Γy2 est ouvert dans Γy2, donc
Γy1 ∩ Γy2 6= ∅, c’est-à-dire ȳ1 = ȳ2. �

Soit X 	 Γ, Y 	 Λ des espaces de probabilité libres et orbitalement équivalents. Fixons
une équivalence orbitale F : X → Y . Pour presque tout x ∈ X et tout γ ∈ Γ il existe
(OE) un unique (liberté) élément α(γ, x) ∈ Λ tel que F (γx) = α(γ, x)F (x). Cela définit
pp une application mesurable α : Γ × X → Λ qui vérifie la relation de cocyle α(γγ′, x) =
α(γ, γ′x)α(γ′, x).

On dit qu’une autre équivalence orbitale F ′ : X → Y est équivalente à F s’il existe une
application f : X → Λ telle que F ′(x) = f(x)F (x) pp — c’est-à-dire que F et F ′ induisent
essentiellement la même application de X/Γ vers Y/Λ. Les cocycles associés vérifient alors
pp α′(γ, x) = f(γx)α(γ, x)f(x)−1 : on dit qu’ils sont cohomologues. Inversement, si f : X →
Λ est une application quelconque, le Γ-isomorphisme F ′ associé n’est pas en général une
équivalence orbitale, mais seulement une équivalence orbitale faible. [Existe-t-il des cocyles
qui ne proviennent pas d’une équivalence orbitale faible ? ]

1.2 Équivalence mesurable et induction
La démonstration du théorème 0.1 utilise le langage des équivalences mesurables. Nous

allons donc expliquer comment passer d’une équivalence orbitale d’actions à une équivalence
mesurable de groupes, et comment démontrer l’isomorphisme des actions dans ce nouveau
cadre. On peut faire le chemin inverse, mais on obtient alors des équivalences orbitales faibles
— ce qui n’est pas grave : le théorème reste valide — et on perd la liberté des actions.
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Fixons une équivalence orbitale F : X → Y entre deux Γ-espaces de probabilité libres.
On note α : Γ×X → Λ le cocyle associé à F , et β : Λ×Y → Γ celui associé à F−1. On définit
un Γ × Λ-espace Z en posant Z = X × Λ, γ(x, µ) = (γx, α(γ, x)µ) et λ(x, µ) = (x, µλ−1).
Alors, Z est un couplage mesurable entre Γ et Λ, au sens de la définition suivante :

Définition 1.3 On dit que Γ et Λ sont équivalents en mesure s’il existe un Γ× Λ-espace Z
tel que les actions Z 	 Γ et Z 	 Λ admettent des domaines fondamentaux de mesure finie.
Un tel Γ×Λ-espace est appelé un couplage entre Γ et Λ. On dit que le couplage est ergodique
si Z 	 Γ× Λ est ergodique, ce qui est équivalent à l’ergodicité de Z/Γ 	 Λ ou Z/Λ 	 Γ.

Dans notre cas il est clair que Z 	 Λ admet un domaine fondamental X̃ = X × {1Λ}. Pour
voir que c’est également le cas de Z 	 Γ, on explicite le fait que la situation est symétrique
de la manière suivante : on a Z ' Z ′ = Y ×Λ pour le Γ×Λ-isomorphisme Θ : Z → Z ′ et les
actions Z ′ 	 Γ× Λ donnés par

Θ(x, λ) = (λ−1F (x), β(λ−1, F (x))), Θ−1(y, γ) = (γ−1F−1(y), α(γ−1, F−1(y)))

γ(y, δ) = (y, δγ−1), λ(y, δ) = (λy, β(λ, y)δ).

On a Θ(x, 1Λ) = (F (x), 1Γ) donc X̃ est également un domaine fondamental pour Z 	 Γ. Les
domaines fondamentaux pour Z 	 Λ sont de la forme X̃ ′ = {x, f(x) | x ∈ X} où f : X → Λ
est mesurable. S’il existe un isomorphisme ϕ : Γ → Λ tel que γX̃ ′ = ϕ(γ)−1X̃ ′ pour tout
γ ∈ Γ, on démontre facilement les égalités α(γ, x) = f(γx)ϕ(γ)f(x)−1, ie α est cohomologue à
un isomorphisme, et f(γx)−1F (γx) = ϕ(γ) f(x)−1F (x), ie X 	 Γ et Y 	 Λ sont isomorphes.

Partons maintenant d’une équivalence mesurable Z 	 Γ × Λ. Le fait que le Γ-espace Z
admette un domaine fondamental implique qu’il est libre et que ΓW est de mesure infinie dès
que W ⊂ Z est de mesure non nulle. En général deux domaines fondamentaux respectifs pour
Z 	 Γ et Z 	 Λ peuvent avoir des mesures différentes dont le rapport est appelé constante
de couplage de Z 	 Γ×Λ — on a vu que lorsque Z provient d’une équivalence orbitale, cette
constante vaut 1.

Soit Y un domaine fondamental pour Z 	 Γ. Pour presque tout z ∈ Z il existe un élément
r(z) ∈ Γ tel que r(z)−1z ∈ Y , et cela définit une application mesurable et Γ-équivariante
r : Z → Γ. On retrouve Y en remarquant que Y = {r(z)−1z | z ∈ Z} = r−1({1Γ}).

Dans l’isomorphisme Z/Γ ' Y l’action Z/Γ 	 Λ se lit de la manière suivante : λ · y =
r(λy)−1λy, et la formule β(λ, y) = r(λy)−1 définit un cocycle pour cette action. Dans le cas
où Z provient d’une équivalence orbitale, on retrouve bien sûr l’action originale Y 	 Λ à
isomorphisme près, et β est le cocycle associé à l’équivalence orbitale.

Étant donnée une équivalence mesurable Z entre Γ et Λ, on a une notion d’induction des
représentations de Γ à Λ. Soit V une représentation unitaire de Γ sur un espace de Hilbert
— on peut généraliser ce qui suit aux représentations isométriques ultrafaiblement continues
sur les espaces de Banach duaux.

Soit Y un domaine fondamental pour Z 	 Γ, pour tout p ∈ [1,+∞] on munit Ip
ZV :=

Lp(Y, V ) de la représentation de Λ qui suit : (λf)(y) = r(λ−1y)f(λ−1 ·y). Cette représentation
induite est isométrique et ultrafaiblement continue, unitaire lorsque p = 2. Si on identifie Ip

ZV
à un sous-espace « Lp » de L(Z, V )Γ, alors cette représentation provient de l’action naturelle
L(Z, V ) 	 Λ, où Λ agit trivialement sur V . En particulier si Λ est un sous-groupe d’indice
fini dans Γ, en prenant X = Γ muni de l’action par translation à gauche (resp. à droite) de
Γ (resp. Λ) on retrouve la notion d’induction classique.

Rappelons qu’une représentation unitaire V de Γ est dite c0 si on a limγ→∞(ζ|γξ) = 0
pour tous ζ, ξ ∈ V . C’est en particulier le cas de la représentation régulière de Γ. Cette
notion est stable par induction comme le montre le lemme suivant.
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Lemme 1.4 Soit Z un couplage mesurable entre Γ et Λ et V une représentation unitaire et c0

de Γ. Alors I2
ZV est également c0. De plus on n’a pas besoin que les domaines fondamentaux

de Z 	 Λ soient de mesure finie.

Démonstration. Il suffit de montrer que limλ→∞(ζ|λζ) = 0 pour ζ variant dans un sous-
ensemble dense de I2

ZV . Considérons donc une fonction ζ ∈ L2(Y, V ) qui ne prend qu’un
nombre fini de valeurs v1, . . . , vn. Soit Ωε ⊂ Γ le sous-ensemble fini des éléments γ ∈ Γ tels
que |(vi|γvj)| > ε pour tous i, j. Fixons un élément λ ∈ Λ, en distinguant l’ensemble des
éléments y ∈ Y tels que r(λ−1y) ∈ Ωε (⇔ y ∈ λΩεY ) de son complémentaire on voit que∣∣∣ ∫

Y

(ζ(y)|r(λ−1y)ζ(λ−1 · y))dy
∣∣∣ ≤ ‖ζ‖2∞ |λΩεY ∩ Y |+ ε|X|.

Il ne reste plus qu’à observer que limλ→∞ |λΩεY ∩Y | = 0, en incluant approximativement ΩεY
et Y , qui sont de mesure finie, dans un nombre fini de translatés d’un domaine fondamental
de Z 	 Λ — cela revient à démontrer que L2(Z) 	 Λ est c0. [Préciser ...] �

1.3 Résultats de la deuxième section
Dans la deuxième section on définira et on étudiera les groupes de cohomologie bornée

Hn
b (Γ, V ), en particulier lorsque V est une représentation unitaire de Γ. Pour démontrer le

théorème 0.1, nous avons juste besoin de savoir les choses suivantes :
1. Si V = 0 alors Hn

b (Γ, V ) = 0 ; si V ' V ′ alors Hn
b (Γ, V ) ' Hn

b (Γ, V ′).
2. Si V ↪→ V ′ est une sous-représentation on peut définir une application Hn

b (Γ, V ) →
Hn

b (Γ, V ′) qui est injective pour n = 2.
3. Si Z 	 Γ × Λ est un couplage mesurable, on peut définir une application d’induction

Hn
b (Γ, V ) → Hn

b (Λ, I2
ZV ) qui est injective pour n = 2.

4. Si Γ = Γ1 × Γ2 alors on a la formule H2
b (Γ, V ) = H2

b (Γ1, V
Γ2)⊕H2

b (Γ2, V
Γ1).

1.4 Rigidité
On démontre maintenant le résultat de rigidité annoncé. L’utilisation des résultats de

cohomologie bornée présentés précédemment est isolée dans la proposition 1.5. On en déduit
par des méthodes élémentaires de théorie ergodique le théorème 1.6 dont le théorème 0.1 est
clairement une conséquence, au vu du lien entre équivalence orbitale et équivalence mesurable
que nous avons décrit plus haut.

On note C la classe des groupes dénombrables Γ pour lesquels il existe une représentation
V unitaire et c0 telle que H2

b (Γ, V ) 6= 0.

Proposition 1.5 Soit Γ = Γ1 × Γ2 un produit cartésien de deux groupes dans C et sans
torsion. Soit Λ = Λ1 × Λ2 un produit cartésien de deux groupes dénombrables. Soit Z un
couplage mesurable entre Γ et Λ tel que les actions Z/Γ 	 Λi soient ergodiques. Alors il existe
un domaine fondamental Y pour Z 	 Γ tel que ΛiY ⊂ ΓiY pour i = 1, 2, à permutation près.

Démonstration. Soit V1 une représentation unitaire et c0 de Γ1 telle que H2
b (Γ1, V1) 6= 0. On

considère V1 comme une représentation de Γ via la projection sur Γ1 et H2
b (Γ, V1) est non nul

car il admet H2
b (Γ1, V

Γ2
1 ) = H2

b (Γ1, V1) comme facteur direct. Par conséquent H2
b (Λ, I2

ZV1)
est non nul. Or on a

H2
b (Λ, V1) = H2

b (Λ1, (I2
ZV1)Λ2)⊕H2

b (Λ2, (I2
ZV1)Λ1).

L’un des deux facteurs est donc nul, on peut par exemple supposer que c’est le premier et on
en déduit en particulier (I2

ZV1)Λ2 6= 0.
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Soit Y0 un domaine fondamental quelconque pour Z 	 Γ et r0 : Z → Γ l’application
Γ-équivariante associée. D’après ce qui précède il existe ρ1 : Y0 → V1 non nulle telle que
ρ1(λ · y) = r0(λy)−1ρ1(y) pour tout λ ∈ Λ2 et presque tout y ∈ Y0. Maintenant, comme
V1 	 Γ est c0, ses orbites sont discrètes donc l’espace des orbites V1/Γ est séparable. De
plus Y0 	 Λ2 est ergodique par hypothèse, donc l’application invariante ρ̄1 : Y0 → V1/Γ est
constante — autrement dit ρ1 est à valeurs dans une orbite Γv, avec v 6= 0 car ρ1 6= 0.

Par ailleurs, si γ ∈ Γ \ Γ2 alors le projeté de γn sur Γ1 tend vers +∞ car Γ1 est sans
torsion, et comme V1 est c0 il s’ensuit que (v|γnv) → 0, donc γ /∈ StabΓ(v). Comme Γ2 n’agit
pas, on a StabΓ(v) = Γ2. On peut donc identifier l’orbite Γv à Γ/Γ2 et on obtient en relevant
ρ1 une application r1 : Y0 → Γ telle que

∀λ ∈ Λ2 r1(λ · y) = r0(λy)−1r1(y) mod Γ2. (1)

On pose alors Y1 = {r1(y)−1y | y ∈ Y0}. C’est clairement un domaine fondamental pour
Z 	 Γ et on a, pour tout λ ∈ Λ2 :

λ r1(y)−1y = r1(y)−1 λy = r1(y)−1r0(λy)(λ · y)

= r1(y)−1r0(λy)r1(λ · y) r1(λ · y)−1(λ · y).

D’après (1) on a r1(y)−1r0(λy)r1(λ · y) ∈ Γ2 et on a donc démontré que Λ2Y1 ⊂ Γ2Y1.

On recommence maintenant avec une représentation V2, unitaire et c0, de Γ2 telle que
H2

b (Γ2, V2) 6= 0. Pour les mêmes raisons que précédemment on a H2
b (Λ1, (I2

ZV2)Λ2) 6= 0 ou
H2

b (Λ2, (I2
ZV2)Λ1) 6= 0, choisissons une indexation (i, j) de {1, 2} telle que H2

b (Λi, (I2
ZV2)Λj )

est non nul. À nouveau on en déduit l’existence de r2 : Y1 → Γ telle que

∀λ ∈ Λj r2(λ · y) = r1(λy)−1r2(y) mod Γ1.

Pour cette deuxième étape on doit de plus remplacer r2 par sa composée avec la projection
Γ � Γ2 : cela ne change rien modulo Γ1 donc l’identité ci-dessus est toujours valable. Le
même calcul que précédemment montre que ΛjY2 ⊂ Γ1Y2 pour le domaine fondamental
Y2 = {r2(y)−1y | y ∈ Y1}. Par ailleurs comme Y2 ⊂ Γ2Y1 ⊂ Γ2Y2 on a

Λ2Y2 ⊂ Λ2Γ2Y1 = Γ2Λ2Y1 ⊂ Γ2Γ2Y1 ⊂ Γ2Y2.

En particulier, si on avait j = 2 on aurait Λ2Γ2 ⊂ Γ1Y2 ∩Γ2Y2 = Y2 ce qui est impossible car
Λ2Γ2 est de mesure infinie. En posant Y = Y2 on a donc finalement

Λ1Y ⊂ Γ1Y et Λ2Y ⊂ Γ2Y. �

Théorème 1.6 Soit Γ = Γ1×Γ2 un produit cartésien de deux groupes dans C et sans torsion.
Soit Λ = Λ1 × Λ2 un produit cartésien de deux groupes sans torsion. Soit Z un couplage
mesurable de constante 1 entre Γ et Λ tel que les actions Z/Γ 	 Λi soient ergodiques. Alors
il existe, à permutation près de Λ1 et Λ2, des isomorphismes ϕi : Γi → Λi et un domaine
fondamental Y commun à Z 	 Γ et Z 	 Λ tel que γY = ϕ(γ)−1Y pour ϕ = ϕ1 × ϕ2 et tout
γ ∈ Γ.

Démonstration. D’après la proposition précédente on peut choisir un domaine fondamental
Y pour Z 	 Γ tel que ΛiY ⊂ ΓiY pour i = 1, 2. Montrons que Y est aussi un domaine
fondamental pour Z 	 Λ. Il suffit de montrer que |λY ∩ Y | = 0 pour λ 6= 1 : comme Z 	 Λ
admet un domaine fondamental, on pourra en déduire qu’il existe un tel domaine X ⊃ Y ,
mais on a |X| = |Y | par hypothèse.

Soit Z2 = Γ2Y muni de l’action de Γ2×Λ2. Pour tout λ1 ∈ Λ1, le sous-ensemble λ1Z2∩Z2

de Z2 est stable par l’action ergodique de Γ2 × Λ2, donc on a soit |λ1Z2 ∩ Z2| = 0, ce qui
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implique |λ1Y ∩ Y | = 0, soit Z2 ⊂ λ1Z2 à un ensemble de mesure nulle près. Ce deuxième
cas est exclu lorsque λ1 6= 1 : on aurait en effet λ−1

1 Y ⊂ λ−1
1 Z2 ⊂ Z2 = Γ2Y , mais d’autre

part on a λ−1
1 Y ⊂ Γ1Y et on obtiendrait ainsi λ−1

1 Y ⊂ Y donc λ−n
1 Y ⊂ Y pour tout n, ce

qui est impossible car Λ1 est sans torsion et Y est de mesure finie.
En utilisant Z1 = Γ1Y on montre de même que |λ2Y ∩ Y | = 0 pour tout λ2 ∈ Λ2 \ {1}.

Enfin si (λ1, λ2) ∈ Λ est différent de 1, par exemple λ2 6= 1, on a

λY ∩ Y = (λ2(λ1Y ∩ λ−1
2 Y )) ∩ Y ⊂ (λ2(Γ1Y ∩ Γ2Y )) ∩ Y = λ2Y ∩ Y

donc |λY ∩ Y | = 0.
Exactement par le même raisonnement que précédemment on montre que λ1Y et γ1Y

sont soit confondus soit disjoints, à des ensembles de mesure nulle près. Comme Y est un
domaine fondamental pour les actions de Γ et Λ, cela implique clairement l’existence d’une
bijection ϕ1 : Γ1 → Λ1 telle que ϕ1(γ1)−1Y = γ1Y pour tout γ1 ∈ Γ1. Pour γ1, γ′1 ∈ Γ1 on a,
à des ensembles de mesure nulle près :

ϕ1(γ1γ
′
1)
−1Y = γ1γ

′
1Y = γ1ϕ1(γ′1)

−1Y = ϕ1(γ′1)
−1γ1Y = ϕ1(γ′1)

−1ϕ1(γ1)−1Y,

donc ϕ1 est un isomorphisme. On obtient ϕ2 de la même manière. �

2 Cohomologie bornée
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