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Introduction

L’objectif de cet exposé est de démontrer le théoréme suivant :

Théoréme 0.1 Soit I' ="y x 'y un produit cartésien de deux groupes libres non abéliens.
Soit A = Ay X Ay un produit cartésien de deux groupes sans torsion quelconques. Soit X un I'-
espace de probabilité libre quelconque, et Y un I'-espace de probabilité libre tel que les actions
Y O A; sont ergodiques. Si les actions X O T et Y O A sont orbitalement équivalentes, alors
il existe des isomorphismes I'; >~ A; a permutation prés de Ay et Ao, et l’équivalence orbitale
est induite par un isomorphisme des actions.

On peut remplacer les groupes libres par des groupes bien plus généraux, vérifiant des condi-
tions de « courbure négative ». En fait on a juste besoin d’avoir des groupes de cohomologie
bornée HbQ(FZ-,Vi) non nuls, avec V; une représentation unitaire et ¢y. Cela est vérifié en
particulier par les groupes non élémentaires agissant proprement sur des espaces CAT(—1)
propres ou des graphes hyperboliques & valence bornée.

La preuve fait intervenir des méthodes de théorie ergodique et des outils de cohomolo-
gie bornée. En ce qui concerne la premiére catégorie on parlera notamment d’équivalence
mesurable de groupes. En ce qui concerne la seconde, on a besoin d’une formule pour la co-
homologie d’un produit cartésien, et d’un résultat d’injectivité pour 'application d’induction
en cohomologie. La démonstration de ces résultats de cohomologie bornée utilise de maniére
essentielle l'existence d’une frontiére forte pour les groupes considérés, qui est un résultat
de théorie ergodique. Enfin, par des méthodes de théorie ergodique on peut transformer le
théoréme de rigidité forte énoncé ci-dessus en un théoréme de superrigidité.

1 Equivalence mesurable et rigidité

Dans tout I'exposé les groupes considérés sont discrets et dénombrables. Si I' agit sur deux
espaces X et Y, alors on munit tout espace de fonctions de X vers Y de l'action « naturelle »
donnée par (vf)(z) = vf(y ), sauf précision contraire. On note par ailleurs X' I'ensemble
des points fixes de X OT.

1.1 Ergodicité et équivalence orbitale
On adopte la terminologie suivante :

Définition 1.1 Un T-espace X O T' est un espace borélien standard muni d’une action
mesurable de I' et d’une mesure invariante et o-finie. Un I'-morphisme entre I'-espaces est
une application mesurable définie presque partout qui conserve la mesure et entrelace les
actions. Un T'-espace de probabilité est un I'-espace de mesure 1. On dit que X O T est
libre si laction de T' est essentiellement libre : Stabp(z) = {1} presque partout. On dit que
X O T est ergodique si L°(X)Y = C. On dit que X O T et Y O A sont orbitalement



équivalents s’il existe un I'-isomorphisme F : X — Y tel que F(I'z) = AF(x) presque
partout ; une telle application F est alors appelée équivalence orbitale. On dit que X O T et
Y O A sont isomorphes s’il existe des (T-)isomorphismes ¢ : T — A et F': X — 'Y tels que
F(vyx) = p(v)F(x) pour tout v € T et presque tout x € X.

On a le résultat suivant, qui ne sera pas utilisé dans la suite : si X O I', Y O T sont ergodiques
et F: X — Y est un I'-quasi-isomorphisme, alors f préserve automatique la mesure, donc
est un isomorphisme. Nous aurons besoin du lemme suivant, dans lequel I’hypothése de
séparabilité — c’est-a-dire ’existence d’une famille dénombrable de boréliens qui sépare les
points — est essentielle.

Lemme 1.2

1. Soit X un T-espace ergodique et Y wun espace mesurable séparable, muni_de laction
triviale de T. Alors ’espace des classes de fonctions invariantes L(X,Y)' est réduit
aux classes de fonctions constantes.

2. Soit Y un espace topologique polonais sur lequel I' agit continiment. Si les orbites de
Y O T sont localement fermées alors l'espace mesurable quotient Y est séparable.

DEMONSTRATION.

1. Fixons une suite de boréliens de Y qui sépare les points, et soit f; : ¥ — {0,1}
les fonctions caractéristiques correspondantes : lapplication (f;) réalise un isomorphisme
mesurable entre Y et un borélien de {0,1}N. Maintenant, si f : X — Y ~ {0,1} est
invariante, ses composantes le sont aussi, donc chacune est constante presque partout. Comme
une réunion dénombrable de boréliens négligeables est négligeable, f est constante presque
partout.

2. Comme Y a une topologie 4 base dénombrable, c’est aussi le cas de Y. Cependant
Y n’est pas Haussdorf en général. On va montrer une propriété plus faible, qui suffit pour
avoir le résultat recherché sur la structure borélienne : Y est T, c’est-a-dire que pour tous
U1 # Y2 € Y il existe un ouvert U C Y tel que 4 € U et 3o ¢ U, a permutation de y;
et yo prés. Supposons que ¥, %2 ne vérifient pas cette propriété : alors on a I'y; C Tyy et
T'ys C Tyq, donc T'y; est dense dans T'y,. Mais par hypothése T'y est ouvert dans I'ys, donc
Ty NTys # 0, c’est-a-dire §1 = ¥o. [ |

Soit X O T, Y O A des espaces de probabilité libres et orbitalement équivalents. Fixons
une équivalence orbitale F' : X — Y. Pour presque tout x € X et tout v € T' il existe
(OE) un unique (liberté) élément a(y,z) € A tel que F(yx) = a(y,x)F(z). Cela définit
pp une application mesurable « : T' x X — A qui vérifie la relation de cocyle a(yy/,x) =
a(y,v'z)a(y, z).

On dit qu’une autre équivalence orbitale F’ : X — Y est équivalente & F' §’il existe une
application f : X — A telle que F'(z) = f(z)F(x) pp — c’est-a-dire que F' et F’ induisent
essentiellement la méme application de X/T" vers Y/A. Les cocycles associés vérifient alors
pp & (v,2) = f(yz)a(y, z) f(x)~! : on dit qu’ils sont cohomologues. Inversement, si f : X —
A est une application quelconque, le T'-isomorphisme F’ associé n’est pas en général une
équivalence orbitale, mais seulement une équivalence orbitale faible. [Existe-t-il des cocyles
qui ne proviennent pas d’une équivalence orbitale faible ?|

1.2 Equivalence mesurable et induction

La démonstration du théoréme 0.1 utilise le langage des équivalences mesurables. Nous
allons donc expliquer comment passer d’'une équivalence orbitale d’actions & une équivalence
mesurable de groupes, et comment démontrer 1'isomorphisme des actions dans ce nouveau
cadre. On peut faire le chemin inverse, mais on obtient alors des équivalences orbitales faibles
— ce qui n’est pas grave : le théoréme reste valide — et on perd la liberté des actions.



Fixons une équivalence orbitale F' : X — Y entre deux I'-espaces de probabilité libres.
Onnote o : I'x X — A le cocyle associé & F, et 3: AxY — T celui associé & F~!. On définit
un I' x A-espace Z en posant Z = X x A, y(z,p) = (yz,a(y,z)u) et Mz, p) = (z, uA71).
Alors, Z est un couplage mesurable entre I' et A, au sens de la définition suivante :

Définition 1.3 On dit que I' et A sont équivalents en mesure s’il existe un I' X A-espace Z
tel que les actions Z O T et Z O A admettent des domaines fondamentaux de mesure finie.
Un tel T' x A-espace est appelé un couplage entre I' et A. On dit que le couplage est ergodique
st ZOT x A est ergodique, ce qui est équivalent a ’ergodicité de Z/T O A ou Z/A OT.

Dans notre cas il est clair que Z 9 A admet un domaine fondamental X = X x {1o}. Pour
voir que c’est également le cas de Z O T', on explicite le fait que la situation est symétrique
de la maniére suivante : on a Z ~ Z' =Y x A pour le I' X A-isomorphisme © : Z — Z’ et les
actions Z' O T x A donnés par

O(z,A) = (A 'F(z), B F(2), ' y,v)=0""F '), alvy ", F ()
Yy, 8) = (1,677"), Ay, ) = (Ay, B\, y)d).

On a ©(z,14) = (F(z),1r) donc X est également un domaine fondamental pour Z O T'. Les
domaines fondamentaux pour Z ¢ A sont de la forme X' = {z, f(z) |z € X} ou f: X — A
est mesurable. S'il existe un isomorphisme ¢ : I' — A tel que vX’ = () "' X’ pour tout
v € T', on démontre facilement les égalités a(vy, z) = f(yz)e(v)f(z) 7}, ie a est cohomologue &
un isomorphisme, et f(yz) " F(yx) = ¢(y) f(x) " F(x),ie X OT et Y O A sont isomorphes.

Partons maintenant d’une équivalence mesurable Z O I" x A. Le fait que le I'-espace Z
admette un domaine fondamental implique qu’il est libre et que I'W est de mesure infinie dés
que W C Z est de mesure non nulle. En général deux domaines fondamentaux respectifs pour
Z O T et Z O A peuvent avoir des mesures différentes dont le rapport est appelé constante
de couplage de Z O T' x A — on a vu que lorsque Z provient d’une équivalence orbitale, cette
constante vaut 1.

Soit Y un domaine fondamental pour Z O I'. Pour presque tout z € Z il existe un élément
r(z) € T tel que r(2)7 1z € Y, et cela définit une application mesurable et I'-équivariante
r:Z — T. On retrouve Y en remarquant que Y = {r(2)"'z | 2 € Z} = r({1r}).

Dans l'isomorphisme Z/T' ~ Y 'action Z/T" O A se lit de la maniére suivante : A -y =
r(Ay) 1y, et la formule B(\,y) = r(A\y)~! définit un cocycle pour cette action. Dans le cas
ou Z provient d’une équivalence orbitale, on retrouve bien str l'action originale Y O A &
isomorphisme pres, et 3 est le cocycle associé a ’équivalence orbitale.

Etant donnée une équivalence mesurable Z entre I et A, on a une notion d’induction des
représentations de I' & A. Soit V' une représentation unitaire de I' sur un espace de Hilbert
— on peut généraliser ce qui suit aux représentations isométriques ultrafaiblement continues
sur les espaces de Banach duaux.

Soit Y un domaine fondamental pour Z O I', pour tout p € [1,+00] on munit I5V :=
LP(Y, V) de lareprésentation de A qui suit : (Af)(y) = r(A~ty) f(A\~1-y). Cette représentation
induite est isométrique et ultrafaiblement continue, unitaire lorsque p = 2. Si on identifie I,V
4 un sous-espace « LP » de £(Z,V)!', alors cette représentation provient de I’action naturelle
L(Z, V) O A, ou A agit trivialement sur V. En particulier si A est un sous-groupe d’indice
fini dans T', en prenant X = I" muni de Paction par translation a gauche (resp. a droite) de
I (resp. A) on retrouve la notion d’induction classique.

Rappelons qu’une représentation unitaire V' de I' est dite ¢y si on a lim, o ({|y§) = 0
pour tous ¢, & € V. C’est en particulier le cas de la représentation réguliére de I'. Cette
notion est stable par induction comme le montre le lemme suivant.



Lemme 1.4 Soit Z un couplage mesurable entre I' et A et V une représentation unitaire et cq
de T'. Alors I%V est également co. De plus on n’a pas besoin que les domaines fondamentaux
de Z O A\ soient de mesure finie.

DEMONSTRATION. Il suffit de montrer que limy_, o ({|A() = 0 pour ¢ variant dans un sous-
ensemble dense de I3V. Considérons donc une fonction ¢ € L*(Y,V) qui ne prend quun
nombre fini de valeurs vy, ..., v,. Soit 2. C I' le sous-ensemble fini des éléments v € T" tels
que |(vi|yv;)| > € pour tous 4, j. Fixons un élément A € A, en distinguant I’ensemble des
éléments y € Y tels que r(A"1y) € Q. (& y € MLY) de son complémentaire on voit que

| [ €O | < I ey Y]+ |,

Il ne reste plus qu’a observer que limy o |[AQ2.YNY| = 0, en incluant approximativement Q.Y
et Y, qui sont de mesure finie, dans un nombre fini de translatés d’un domaine fondamental
de Z O A — cela revient a démontrer que L2(Z) O A est cq. |Préciser ...| [ |

1.3 Reésultats de la deuxiéme section

Dans la deuxiéme section on définira et on étudiera les groupes de cohomologie bornée
H}'(T', V), en particulier lorsque V est une représentation unitaire de I'. Pour démontrer le
théoréme 0.1, nous avons juste besoin de savoir les choses suivantes :

1. SiV =0alors H'(I',V) =0;si V ~ V' alors H(I',V) ~ H(T, V).

2. Si V — V' est une sous-représentation on peut définir une application H'(I',V) —
HP (T, V') qui est injective pour n = 2.

3. 51 Z OT x A est un couplage mesurable, on peut définir une application d’induction
H}T,V) — HP(A,IZV) qui est injective pour n = 2.

4. SiT' =T x I'y alors on a la formule HZ(I', V) = HZ(T'1,V'2) @ HZ (T2, V).

1.4 Rigidite

On démontre maintenant le résultat de rigidité annoncé. L’utilisation des résultats de
cohomologie bornée présentés précédemment est isolée dans la proposition 1.5. On en déduit
par des méthodes élémentaires de théorie ergodique le théoréme 1.6 dont le théoréme 0.1 est
clairement une conséquence, au vu du lien entre équivalence orbitale et équivalence mesurable
que nous avons décrit plus haut.

On note C la classe des groupes dénombrables I" pour lesquels il existe une représentation
V unitaire et ¢o telle que HZ(I', V) # 0.

Proposition 1.5 Soit I' = 'y x ['s un produit cartésien de deux groupes dans C et sans
torsion. Soit A = A1 X Ay un produit cartésien de deux groupes dénombrables. Soit Z un
couplage mesurable entre T' et A tel que les actions Z/T O A; soient ergodiques. Alors il existe
un domaine fondamental Y pour Z O T tel que ;Y C T;Y pouri = 1,2, a permutation prés.

DEMONSTRATION. Soit V7 une représentation unitaire et ¢y de I'y telle que Hbz(I‘l, V1) #0.On
considére V; comme une représentation de I' via la projection sur I'y et H E (T', V1) est non nul
car il admet HZ(T'y,V,'?) = HZ(T1, V1) comme facteur direct. Par conséquent HZ (A, I2V;)
est non nul. Or on a

HEZ(A Vi) = HE(Ar, (IZV1)"2) @ HE (Ao, (IZV1)™).

L’un des deux facteurs est donc nul, on peut par exemple supposer que c’est le premier et on
en déduit en particulier (12V;)"2 # 0.



Soit Yy un domaine fondamental quelconque pour Z O I' et g : Z — T ’application
I'-équivariante associée. D’aprés ce qui précéde il existe p; : Yy — Vi non nulle telle que
p1(A - y) = ro(Ay)"Lp1(y) pour tout A € Ay et presque tout y € Y;. Maintenant, comme
Vi O T est ¢g, ses orbites sont discrétes donc lespace des orbites Vi /T est séparable. De
plus Yy O Ag est ergodique par hypothése, donc 'application invariante p; : Yy — Vi /T est
constante — autrement dit p; est & valeurs dans une orbite I'v, avec v # 0 car p; # 0.

Par ailleurs, si v € T'\ I'y alors le projeté de v™ sur I'; tend vers +oo car I'y est sans
torsion, et comme V; est ¢g il s’ensuit que (v|y"v) — 0, donc v ¢ Stabr(v). Comme I'y n’agit
pas, on a Stabr(v) = I's. On peut donc identifier 'orbite T'v & T'/T'y et on obtient en relevant
p1 une application 1 : Yy — T telle que

YAe Ay ri(A-y) =ro(Ay) tri(y) mod Tsy. (1)

On pose alors Y7 = {r1(y)~ly | y € Yp}. Clest clairement un domaine fondamental pour
Z OT et on a, pour tout A € Ag :

Ari(y) ly=ri(y) " Ay =r1(y) ro(Ay) (A - y)
=r1(y) roAy)ri(A - y) (A y) T - ).

D’apres (1) on a r1(y) " *ro(Ay)ri(A-y) € 'z et on a donc démontré que A2Y; C T'pYs.

On recommence maintenant avec une représentation Vo, unitaire et c¢o, de 'y telle que
H(T'9, V) # 0. Pour les mémes raisons que précédemment on a HZ(Aq, (I2V2)22) # 0 ou
HZ(Aa, (IZV2)A1) £ 0, choisissons une indexation (i, j) de {1,2} telle que HZ(A;, (I2V2)A)

est non nul. A nouveau on en déduit 'existence de ro : Y7 — I telle que
YA€ A; ro(A-y)=7r1(Ay) 'ra(y) mod T.

Pour cette deuxiéme étape on doit de plus remplacer ro par sa composée avec la projection
I' - T's : cela ne change rien modulo I'; donc 'identité ci-dessus est toujours valable. Le
méme calcul que précédemment montre que A;Y> C I'tYs pour le domaine fondamental
Yo = {ra(y) "ty | y € Y1}. Par ailleurs comme Y, C I'2Y; C T35 on a

A2Y2 C AQFQYl = F2A2Y1 C oIy, CI'hYs.

En particulier, si on avait j = 2 on aurait AsI's C I'1 Yo NT9Ys = Y5 ce qui est impossible car
AoT'y est de mesure infinie. En posant Y = Y5 on a donc finalement

ALY CT1Y et AgY C LY. -

Théoréme 1.6 SoitI' =T'1 xI's un produit cartésien de deux groupes dans C et sans torsion.
Soit A = Ay X Ay un produit cartésien de deux groupes sans torsion. Soit Z un couplage
mesurable de constante 1 entre T' et A tel que les actions Z/T O A; soient ergodiques. Alors
il existe, a permutation prés de Ay et Ay, des isomorphismes ; : I'; — A; et un domaine
fondamental Y commun & Z OT et Z O A tel que vY = @(v)™'Y pour ¢ = @1 X @9 et tout
vyel.

DEMONSTRATION. D’aprés la proposition précédente on peut choisir un domaine fondamental
Y pour Z O T tel que A;Y C I';Y pour i« = 1,2. Montrons que Y est aussi un domaine
fondamental pour Z O A. Il suffit de montrer que |A\Y NY| =0 pour A # 1 : comme Z O A
admet un domaine fondamental, on pourra en déduire qu’il existe un tel domaine X D Y,
mais on a | X| = |Y| par hypothése.

Soit Zy = I'sY muni de Paction de I'y x Ag. Pour tout Ay € Ay, le sous-ensemble \; Zo N Z5
de Z5 est stable par 'action ergodique de T's x Ay, donc on a soit [A;Z> N Z3| = 0, ce qui



implique [\;Y NY| = 0, soit Zy C A1 Z3 & un ensemble de mesure nulle prés. Ce deuxiéme
cas est exclu lorsque A1 # 1 : on aurait en effet )\le C )\le2 C Zy =T'9Y, mais d’autre
part on a A7'Y C T1Y et on obtiendrait ainsi A\{'Y € Y donc A\{™Y C Y pour tout n, ce
qui est impossible car A est sans torsion et Y est de mesure finie.

En utilisant Z; = I'1Y on montre de méme que [A2Y NY| = 0 pour tout Ay € Az \ {1}.
Enfin si (A1, A2) € A est différent de 1, par exemple Ay # 1, on a

AY NY = QoMY NATY)NY € Dol Y NTLY)NY =Y NY

donc [A\Y NY|=0.

Exactement par le méme raisonnement que précédemment on montre que A\1Y et 1Y
sont soit confondus soit disjoints, & des ensembles de mesure nulle prés. Comme Y est un
domaine fondamental pour les actions de I' et A, cela implique clairement ’existence d’une
bijection 7 : 'y — A; telle que <p1('yl)_1Y = 1Y pour tout 1 € I'y. Pour v;, 7] € T'; on a,
a des ensembles de mesure nulle prés :

e1(m) 7Y = 1Y =y101(01) 7Y = 01(v) Y = e1(1) e ()Y,

donc ¢ est un isomorphisme. On obtient ¢- de la méme maniére. |

2 Cohomologie bornée



