

K-theory of the unitary free quantum groups

Roland Vergnioux

joint work with

Christian Voigt

Université de Caen Basse-Normandie
University of Glasgow

Lille, 2012, September 25

Outline

1 Introduction

- The main result
- Strategy

2 Quantum groups and subgroups

- Definitions
- Divisible subgroups

3 Free products

- Bass-Serre Tree
- Dirac element
- Baum-Connes conjecture (1)

4 Computation of $K_*(A_u(Q))$

- Baum-Connes conjecture (2)
- Computation of $K_*(A_u(Q))$

The main result

Let $n \geq 2$ and $Q \in GL_n(\mathbb{C})$. Consider the following unital C^* -algebras, generated by n^2 elements u_{ij} forming a matrix u , and the relations

$$A_u(Q) = \langle u_{ij} \mid u \text{ and } Q\bar{u}Q^{-1} \text{ unitaries} \rangle,$$

$$A_o(Q) = \langle u_{ij} \mid u \text{ unitary and } u = Q\bar{u}Q^{-1} \rangle.$$

They are interpreted as maximal C^* -algebras of discrete quantum groups: $A_u(Q) = C^*(\mathbb{F}U(Q))$, $A_o(Q) = C^*(\mathbb{F}O(Q))$ [Wang, Van Daele 1995].

Theorem

The discrete quantum group $\mathbb{F}U(Q)$ satisfies the strong Baum-Connes property (" $\gamma = 1$ "). We have

$$K_0(A_u(Q)) = \mathbb{Z}[1] \text{ and } K_1(A_u(Q)) = \mathbb{Z}[u] \oplus \mathbb{Z}[\bar{u}].$$

Strategy of proof

- If $Q\bar{Q} \in \mathbb{C}I_n$ we have $\mathbb{F}U(Q) \hookrightarrow \mathbb{Z} * \mathbb{F}O(Q)$ [Banica 1997].
- $\mathbb{F}O(Q)$ satisfies strong Baum-Connes [Voigt 2009].
- Prop.: stability of strong BC under passage to “divisible” subgroups.
- Theorem: stability of strong BC under free products.
- Case $Q\bar{Q} \notin \mathbb{C}I_n$: monoidal equivalence [Bichon-De Rijdt-Vaes 2006].
- Use strong BC to compute the K -groups.

Other possible approach: Haagerup’s Property [Brannan 2011] ?

Result on free products:

- classical case: for groups acting on trees
[Baum-Connes-Higson 1994], [Oyono-oyono 1998], [Tu 1998]
- quantum case: uses the quantum Bass-Serre tree and the associated Julg-Valette element [V. 2004]

Strategy of proof

Result on free products:

- classical case: for groups acting on trees
[Baum-Connes-Higson 1994], [Oyono-oyono 1998], [Tu 1998]
- quantum case: uses the quantum Bass-Serre tree and the associated Julg-Valette element [V. 2004]

Novelties:

- C^* -algebra \mathcal{P} associated to the quantum Bass-Serre tree
[Julg-Valette 1989] and [Kasparov-Skandalis 1991] \rightarrow Dirac element
- Invertibility of the associated Dirac element without “rotation trick”
- Actions of Drinfel'd double $D(\mathbb{F}U(Q))$ in order to be able to take tensor products

Outline

1 Introduction

- The main result
- Strategy

2 Quantum groups and subgroups

- Definitions
- Divisible subgroups

3 Free products

- Bass-Serre Tree
- Dirac element
- Baum-Connes conjecture (1)

4 Computation of $K_*(A_u(Q))$

- Baum-Connes conjecture (2)
- Computation of $K_*(A_u(Q))$

Discrete quantum groups

Let Γ be a discrete group and consider the C^* -algebra $C_0(\Gamma)$.
The product of Γ is reflected on $C_0(\Gamma)$ by a coproduct:

$$\begin{aligned}\Delta : C_0(\Gamma) &\rightarrow M(C_0(\Gamma) \otimes C_0(\Gamma)) \\ f &\mapsto ((g, h) \mapsto f(gh)).\end{aligned}$$

A discrete quantum group \mathbb{G} can be given by:

- a C^* -algebra $C_0(\mathbb{G})$ with coproduct $\Delta : C_0(\mathbb{G}) \rightarrow M(C_0(\mathbb{G}) \otimes C_0(\mathbb{G}))$,
- a C^* -algebra $C^*(\mathbb{G})$ with coproduct,
- a category of corepresentations $\text{Corep } \mathbb{G}$ (semisimple, monoidal : \otimes)

Classical case: $\mathbb{G} = \Gamma$ “real” discrete group \iff commutative $C_0(\Gamma)$.

Then $\text{Irr } \text{Corep } \mathbb{G} = \Gamma$ with $\otimes = \text{product of } \Gamma$.

Discrete quantum groups

Let Γ be a discrete group and consider the C^* -algebra $C_0(\Gamma)$.
The product of Γ is reflected on $C_0(\Gamma)$ by a coproduct Δ .

A discrete quantum group \mathbb{G} can be given by:

- a C^* -algebra $C_0(\mathbb{G})$ with coproduct $\Delta : C_0(\mathbb{G}) \rightarrow M(C_0(\mathbb{G}) \otimes C_0(\mathbb{G}))$,
- a C^* -algebra $C^*(\mathbb{G})$ with coproduct,
- a category of corepresentations $\text{Corep } \mathbb{G}$ (semisimple, monoidal : \otimes)

Classical case: $\mathbb{G} = \Gamma$ “real” discrete group \iff commutative $C_0(\mathbb{G})$.
Then $\text{Irr } \text{Corep } \mathbb{G} = \Gamma$ with $\otimes = \text{product of } \Gamma$.

In general $C_0(\mathbb{G})$ is a sum of matrix algebras:

$$C_0(\mathbb{G}) = \bigoplus \{L(H_r) \mid r \in \text{Irr } \text{Corep } \mathbb{G}\}.$$

The interesting algebra is $C^*(\mathbb{G})$! E.g. $C^*(\mathbb{F}U(Q)) = A_u(Q)$.
 $C_0(\mathbb{G})$, $C^*(\mathbb{G})$ are both represented on a GNS space $\ell^2(\mathbb{G})$.

Quantum subgroups and quotients

Different ways of specifying $\Lambda \subset \mathbb{G}$:

- bisimplifiable sub-Hopf C^* -algebra $C^*(\Lambda) \subset C^*(\mathbb{G})$
conditional expectation $E : C^*(\mathbb{G}) \twoheadrightarrow C^*(\Lambda)$
- full subcategory $\text{Corep } \Lambda \subset \text{Corep } \mathbb{G}$,
containing 1, stable under \otimes and duality [V. 2004]
- surj. morphism $\pi : C_0(\mathbb{G}) \rightarrow C_0(\Lambda)$ compatible with coproducts
[Vaes 2005] in the locally compact case

Quotient space:

- $C_b(\mathbb{G}/\Lambda) = \{f \in M(C_0(\mathbb{G})) \mid (\text{id} \otimes \pi)\Delta(f) = f \otimes 1\}$
with coaction of $C_0(\Lambda)$
- $\ell^2(\mathbb{G}/\Lambda) = \text{GNS construction of } \varepsilon_\Lambda \circ E : C^*(\mathbb{G}) \rightarrow \mathbb{C}$
- $\text{Irr } \text{Corep } \mathbb{G}/\Lambda = \text{Irr } \text{Corep } \mathbb{G}/\sim$,
where $r \sim s$ if $r \subset s \otimes t$ with $t \in \text{Irr } \text{Corep } \Lambda$

Divisible subgroups

$\Lambda \subset \mathbb{G}$ is “divisible” if one of the following equiv. conditions is satisfied:

- There exists a Λ -equivariant isomorphism $C_0(\mathbb{G}) \simeq C_0(\mathbb{G}/\Lambda) \otimes C_0(\Lambda)$.
- There exists a Λ -equivariant isomorphism $C_0(\mathbb{G}) \simeq C_0(\Lambda) \otimes C_0(\Lambda \backslash \mathbb{G})$.
- For all $\alpha \in \text{Irr Corep } \mathbb{G}/\Lambda$ there exists $r = r(\alpha) \in \alpha$ such that $r \otimes t$ is irreducible for all $t \in \text{Irr Corep } \Lambda$.

Examples:

- Every subgroup of $\mathbb{G} = \mathbb{G}$ is divisible.
- Proposition: $\mathbb{G}_0 \subset \mathbb{G}_0 * \mathbb{G}_1$ is divisible.
- Proposition: $\mathbb{F}U(Q) \subset \mathbb{Z} * \mathbb{F}O(Q)$ is divisible.
- $\mathbb{F}O(Q)^{\text{ev}} \subset \mathbb{F}O(Q)$ is not divisible.

In the divisible case $C_0(\mathbb{G}/\Lambda) \simeq \bigoplus \{L(H_{r(\alpha)}) \mid \alpha \in \text{Irr Corep } \mathbb{G}/\Lambda\}$.

Outline

1 Introduction

- The main result
- Strategy

2 Quantum groups and subgroups

- Definitions
- Divisible subgroups

3 Free products

- Bass-Serre Tree
- Dirac element
- Baum-Connes conjecture (1)

4 Computation of $K_*(A_u(Q))$

- Baum-Connes conjecture (2)
- Computation of $K_*(A_u(Q))$

The quantum Bass-Serre tree

$\mathbb{F}_0, \mathbb{F}_1$ discrete quantum groups: $C_0(\mathbb{F}_i), \ell^2(\mathbb{F}_i), C^*(\mathbb{F}_i)$.

Free product: $\mathbb{F} = \mathbb{F}_0 * \mathbb{F}_1$ given by $C^*(\mathbb{F}) = C^*(\mathbb{F}_0) * C^*(\mathbb{F}_1)$.

We have "Irr Corep \mathbb{F} = Irr Corep $\mathbb{F}_0 * \mathbb{F}_1$ " [Wang 1995].

The classical case $\mathbb{F} = \Gamma$

X graph with oriented edges, one edge by pair of adjacent vertices

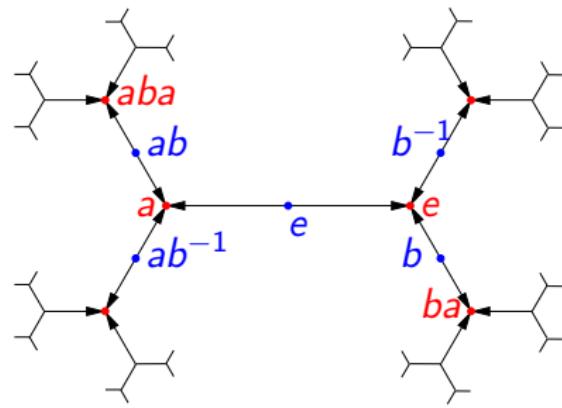
- set of vertices: $X^{(0)} = (\Gamma/\Gamma_0) \sqcup (\Gamma/\Gamma_1)$
- set of edges: $X^{(1)} = \Gamma$
- target and source maps: $\tau_i : \Gamma \rightarrow \Gamma/\Gamma_i$ canonical surjections

The quantum Bass-Serre tree

$\mathbb{F}_0, \mathbb{F}_1$ discrete quantum groups: $C_0(\mathbb{F}_i)$, $\ell^2(\mathbb{F}_i)$, $C^*(\mathbb{F}_i)$.

Free product: $\mathbb{F} = \mathbb{F}_0 * \mathbb{F}_1$ given by $C^*(\mathbb{F}) = C^*(\mathbb{F}_0) * C^*(\mathbb{F}_1)$.

We have "Irr Corep $\mathbb{F} = \text{Irr Corep } \mathbb{F}_0 * \text{Irr Corep } \mathbb{F}_1$ " [Wang 1995].



$$\mathbb{Z}/2\mathbb{Z} * \mathbb{Z}/3\mathbb{Z} = \langle a, b \rangle$$

The quantum Bass-Serre tree

$\mathbb{F}_0, \mathbb{F}_1$ discrete quantum groups: $C_0(\mathbb{F}_i), \ell^2(\mathbb{F}_i), C^*(\mathbb{F}_i)$.

Free product: $\mathbb{F} = \mathbb{F}_0 * \mathbb{F}_1$ given by $C^*(\mathbb{F}) = C^*(\mathbb{F}_0) * C^*(\mathbb{F}_1)$.

We have "Irr Corep $\mathbb{F} = \text{Irr Corep } \mathbb{F}_0 * \text{Irr Corep } \mathbb{F}_1$ " [Wang 1995].

The general case

\mathbb{X} "quantum graph"

- space of vertices: $\ell^2(\mathbb{X}^{(0)}) = \ell^2(\mathbb{F}/\mathbb{F}_0) \oplus \ell^2(\mathbb{F}/\mathbb{F}_1)$,
 $C_0(\mathbb{X}^{(0)}) = C_0(\mathbb{F}/\mathbb{F}_0) \oplus C_0(\mathbb{F}/\mathbb{F}_1)$
- space of edges: $\ell^2(\mathbb{X}^{(1)}) = \ell^2(\mathbb{F})$, $C_0(\mathbb{X}^{(1)}) = C_0(\mathbb{F})$
- target and source operators: $T_i : \ell^2(\mathbb{F}) \rightarrow \ell^2(\mathbb{F}/\mathbb{F}_i)$ unbounded
 $T_i f$ is bounded for all $f \in C_c(\mathbb{F}) \subset K(\ell^2(\mathbb{F}))$.

The ℓ^2 spaces are endowed with natural actions of $D(\mathbb{F})$,
the operators T_i are intertwiners.

Dirac element

We put $\ell^2(\mathbb{X}) = \ell^2(\mathbb{X}^{(0)}) \oplus \ell^2(\mathbb{X}^{(1)})$ and we consider the affine line

Kasparov-Skandalis algebra $\mathcal{P} \subset C_0(E) \otimes K(\ell^2(\mathbb{X}))$

Closed subspace generated by $C_c(\Gamma)$, $C_c(\Gamma/\Gamma_0)$, $C_c(\Gamma/\Gamma_1)$, T_0 and T_1 , with support conditions over E :

- $C_c(E) \otimes C_c(\Gamma)$, $C_c(\Omega_i) \otimes C_c(\Gamma/\Gamma_i)$,
- $C_c(\Omega_i) \otimes (T_i C_c(\Gamma))$, $C_c(\Omega_i) \otimes (T_i C_c(\Gamma))^*$,
- $C_c(\Omega_i) \otimes (T_i C_c(\Gamma))(T_i C_c(\Gamma))^*$.

Proposition

The natural action of $D(\Gamma)$ on $C_0(E) \otimes K(\ell^2(\mathbb{X}))$ restricts to \mathcal{P} .

Dirac element

Kasparov-Skandalis algebra $\mathcal{P} \subset C_0(E) \otimes K(\ell^2(\mathbb{X}))$

Proposition

The natural action of $D(\mathbb{T})$ on $C_0(E) \otimes K(\ell^2(\mathbb{X}))$ restricts to \mathcal{P} .

The inclusion $\Sigma \mathcal{P} \subset \Sigma C_0(E) \otimes K(\ell^2(\mathbb{X}))$, composed with Bott isomorphism and the equivariant Morita equivalence $K(\ell^2(\mathbb{X})) \sim_M \mathbb{C}$, defines the Dirac element $D \in KK^{D(\mathbb{T})}(\Sigma \mathcal{P}, \mathbb{C})$.

Proposition

The element D admits a left inverse $\eta \in KK^{D(\mathbb{T})}(\mathbb{C}, \Sigma \mathcal{P})$.

The dual-Dirac element η is constructed using \mathcal{P} and the Julg-Valette operator $F \in B(\ell^2(\mathbb{X}))$ from [V. 2004], so that $\eta \otimes_{\Sigma \mathcal{P}} D = [F] =: \gamma$. It was already known that $\gamma = 1$ in $KK^{\mathbb{T}}$.

Baum-Connes conjecture (1)

Category KK^{Γ} : Γ - C^* -algebras + morphisms $KK^{\Gamma}(A, B)$

It is “triangulated”:

Class of “triangles”: diagrams $\Sigma Q \rightarrow K \rightarrow E \rightarrow Q$

isomorphic to cone diagrams $\Sigma B \rightarrow C_f \rightarrow A \xrightarrow{f} B$

Motivation: yield exact sequences via $KK(\cdot, X)$, $K(\cdot \rtimes \Gamma)$, ...

Two subcategories:

$$TI_{\Gamma} = \{ \text{ind}_E^{\Gamma}(A) \mid A \in KK \}, \quad TC_{\Gamma} = \{ A \in KK^{\Gamma} \mid \text{res}_E^{\Gamma}(A) \simeq 0 \text{ in } KK \}.$$

$\langle TI_{\Gamma} \rangle$: localizing subcategory generated by TI_{Γ} , i.e. smallest stable under suspensions, K -equivalences, cones, countable direct sums.

Classical case : $\Gamma = \Gamma$ torsion-free. Γ - C^* -algebras in TI_{Γ} are proper, all proper Γ - C^* -algebras are in $\langle TI_{\Gamma} \rangle$.

Baum-Connes conjecture (1)

Category KK^{Γ} : Γ - C^* -algebras + morphisms $KK^{\Gamma}(A, B)$

Two subcategories:

$$TI_{\Gamma} = \{\text{ind}_E^{\Gamma}(A) \mid A \in KK\}, \quad TC_{\Gamma} = \{A \in KK^{\Gamma} \mid \text{res}_E^{\Gamma}(A) \simeq 0 \text{ in } KK\}.$$

$\langle TI_{\Gamma} \rangle$: localizing subcategory generated by TI_{Γ} , i.e. smallest stable under suspensions, K -equivalences, cones, countable direct sums.

Definition (Meyer-Nest)

Strong Baum-Connes property with respect to TI : $\langle TI_{\Gamma} \rangle = KK^{\Gamma}$.

Implies K -amenability. If $\Gamma = \Gamma$ without torsion: corresponds to the existence of a γ element with $\gamma = 1$.

Stability under free products

Theorem

If Γ_0, Γ_1 satisfy the strong Baum-Connes property with respect to Tl , so does $\Gamma = \Gamma_0 * \Gamma_1$.

\mathcal{P} is in $\langle Tl_{\Gamma} \rangle$ because we have the semi-split extension

$$\begin{array}{ccccccc}
 0 & \longrightarrow & I_0 \oplus I_1 & \longrightarrow & \mathcal{P} & \longrightarrow & 0 \\
 & & \downarrow & & \downarrow & & \\
 & & \Sigma \text{ind}_{\Gamma_1}^{\Gamma}(\mathbb{C}) \oplus \Sigma \text{ind}_{\Gamma_0}^{\Gamma}(\mathbb{C}) & & \text{ind}_E^{\Gamma}(\mathbb{C}) & &
 \end{array}$$

and by hypothesis $\mathbb{C} \in KK^{\Gamma_i}$ is in $\langle Tl_{\Gamma_i} \rangle$.

Stability under free products

Theorem

If Γ_0, Γ_1 satisfy the strong Baum-Connes property with respect to Tl , so does $\Gamma = \Gamma_0 * \Gamma_1$.

Since \mathcal{P} is in $\langle Tl_{\Gamma} \rangle$ and $KK^{\Gamma}(\text{ind}_E^{\Gamma} A, B) \simeq KK(A, \text{res}_E^{\Gamma} B)$, one can reduce the “right invertibility” of $D \in KK^{\Gamma}(\Sigma \mathcal{P}, \mathbb{C})$ to its “right invertibility” in $KK(\Sigma \mathcal{P}, \mathbb{C})$.

The invertibility in KK follows from a computation: $K_*(\Sigma \mathcal{P}) = K_*(\mathbb{C})$.

Conclusion: $\Sigma \mathcal{P} \simeq \mathbb{C}$ in KK^{Γ} , hence $\mathbb{C} \in \langle Tl_{\Gamma} \rangle$.

Taking tensor products $\Sigma \mathcal{P} \boxtimes A$ yields $\langle Tl_{\Gamma} \rangle = KK^{\Gamma}$, but one has to consider actions of the Drinfel'd double $D\Gamma$.

Outline

1 Introduction

- The main result
- Strategy

2 Quantum groups and subgroups

- Definitions
- Divisible subgroups

3 Free products

- Bass-Serre Tree
- Dirac element
- Baum-Connes conjecture (1)

4 Computation of $K_*(A_u(Q))$

- Baum-Connes conjecture (2)
- Computation of $K_*(A_u(Q))$

Baum-Connes conjecture (2)

Each $A \in KK^{\Gamma}$ has an “approximation” $\tilde{A} \rightarrow A$ with $\tilde{A} \in \langle TI_{\Gamma} \rangle$, functorial and unique up to isomorphism, which fits in a triangle

$$\Sigma N \rightarrow \tilde{A} \rightarrow A \rightarrow N$$

with $N \in TC_{\Gamma}$ [Meyer-Nest].

T -projective resolution of $A \in KK^{\Gamma}$: complex

$$\cdots \rightarrow C_2 \rightarrow C_1 \rightarrow C_0 \rightarrow A \rightarrow 0$$

with C_i directs summands of elements of TI_{Γ} , and such that

$$\cdots \rightarrow KK(X, C_1) \rightarrow KK(X, C_0) \rightarrow KK(X, A) \rightarrow 0$$

is exact for all X .

A T -projective resolution induces a spectral sequence which “computes” $K_*(\tilde{A} \rtimes \Gamma)$. If strong BC is satisfied, one can take $\tilde{A} = A$!

Baum-Connes conjecture (2)

T -projective resolution of $A \in KK^{\mathbb{F}}$: complex

$$\cdots \rightarrow C_2 \rightarrow C_1 \rightarrow C_0 \rightarrow A \rightarrow 0$$

with C_i directs summands of elements of $TI_{\mathbb{F}}$, and such that

$$\cdots \rightarrow KK(X, C_1) \rightarrow KK(X, C_0) \rightarrow KK(X, A) \rightarrow 0$$

is exact for all X .

A T -projective resolution induces a spectral sequence which “computes” $K_*(\tilde{A} \rtimes \mathbb{F})$. If strong BC is satisfied, one can take $\tilde{A} = A$. In the length 1 case, one gets simply a cyclic exact sequence:

$$\begin{array}{ccccc} K_0(C_0 \rtimes \mathbb{F}) & \rightarrow & K_0(\tilde{A} \rtimes \mathbb{F}) & \rightarrow & K_1(C_1 \rtimes \mathbb{F}) \\ \uparrow & & & & \downarrow \\ K_0(C_1 \rtimes \mathbb{F}) & \leftarrow & K_1(\tilde{A} \rtimes \mathbb{F}) & \leftarrow & K_0(C_0 \rtimes \mathbb{F}). \end{array}$$

Computation of $K_*(A_u(Q))$

Proposition

We have $K_0(A_u(Q)) \simeq \mathbb{Z}$ and $K_1(A_u(Q)) \simeq \mathbb{Z}^2$.

One constructs in $KK^{\mathbb{F}}$ a resolution of \mathbb{C} of the form

$$0 \longrightarrow C_0(\mathbb{F})^2 \longrightarrow C_0(\mathbb{F}) \longrightarrow \mathbb{C} \longrightarrow 0.$$

$C_0(\mathbb{F}) = \text{ind}_E^{\mathbb{F}}(\mathbb{C})$ lies in $Tl_{\mathbb{F}}$.

One has $K_*(C_0(\mathbb{F})) = \bigoplus \mathbb{Z}[r] = R(\mathbb{F})$, ring of corepresentations of \mathbb{F} .

Induced sequence in K -theory:

$$0 \longrightarrow R(\mathbb{F})^2 \xrightarrow{b} R(\mathbb{F}) \xrightarrow{d} \mathbb{Z} \longrightarrow 0,$$

exact for $b(v, w) = v(\bar{u} - n) + w(u - n)$ and $d(v) = \dim v$.

b and d lift to $KK^{\mathbb{F}} \rightarrow T$ -projective resolution.

Computation of $K_*(A_u(Q))$

Proposition

We have $K_0(A_u(Q)) \simeq \mathbb{Z}$ and $K_1(A_u(Q)) \simeq \mathbb{Z}^2$.

We obtain the following cyclic exact sequence:

$$\begin{array}{ccccccc} K_0(C_0(\mathbb{F}) \rtimes \mathbb{F}) & \rightarrow & K_0(\tilde{\mathbb{C}} \rtimes \mathbb{F}) & \rightarrow & K_1(C_0(\mathbb{F})^2 \rtimes \mathbb{F}) \\ \uparrow & & & & \downarrow \\ K_0(C_0(\mathbb{F})^2 \rtimes \mathbb{F}) & \leftarrow & K_1(\tilde{\mathbb{C}} \rtimes \mathbb{F}) & \leftarrow & K_1(C_0(\mathbb{F}) \rtimes \mathbb{F}). \end{array}$$

But $C_0(\mathbb{F}) \rtimes \mathbb{F} \simeq K(\ell^2(\mathbb{F}))$, and $\tilde{\mathbb{C}} \rtimes \mathbb{F} \simeq C^*(\mathbb{F})$ by strong BC.

Computation of $K_*(A_u(Q))$

Proposition

We have $K_0(A_u(Q)) \simeq \mathbb{Z}$ and $K_1(A_u(Q)) \simeq \mathbb{Z}^2$.

We obtain the following cyclic exact sequence:

$$\begin{array}{ccccccc} \mathbb{Z} & \rightarrow & K_0(C^*(\mathbb{F})) & \rightarrow & 0 \\ \uparrow & & & & \downarrow \\ \mathbb{Z}^2 & \leftarrow & K_1(C^*(\mathbb{F})) & \leftarrow & 0. \end{array}$$