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Orthogonal free quantum groups

Consider the unital C*-algebras defined by generators and relations:

Co(n) = (uj,1 <i<n|u=uj, uj unitary),
Ao(n) = (uy, 1 <i,j < n|uy=uj (uj) unitary).

We recognize Co(n) = C*(FO, ) where FO, = (Z/27)*".
We denote A,(n) = C*(FO,). Ao(n) was introduced by S. Wang.

The full structure of FO, is reflected by a coproduct
A Co(n) = Co(mM@Co(n), ui = ui®u;.
Similarly there is a natural coproduct
A Ao(n) — Ao(n)®Ao(n), ujj — Zk Uik @ U .
-+ [FO, is a discrete quantum group : the ortogonal free quantum group.
It is the Pontrjagin dual of the compact quantum group O;'.
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Introduction Discrete quantum groups

Discrete quantum groups

A Woronowicz C*-algebra is a unital C*-algebra A with x-homomorphism
A : A— A®A (coproduct) such that

o (A®id)A = (id®A)A,
o A(A)(1®A) and A(A)(A®1) are dense in AQA.

Examples :

e G compact group, A= C(G), A(f) = ((x,y) — f(xy)),
characterized by commutativity of A ;

o [ discrete group, A= C*(I'), A(g) = g®g — but also A= C ("),
characterized by co-commutativity : YA = A.

Notation : A= C*(I').
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Discrete quantum groups

A Woronowicz C*-algebra is a unital C*-algebra A with x-homomorphism
A : A— A®A (coproduct) such that

o (A®id)A = (id®A)A,
o A(A)(1®A) and A(A)(A®1) are dense in AQA.

General theory :

Haar state h € C*(I")* -» GNS representation A : C*(I') — B(¢2T),
Cr () = X\(C*()) is again a Woronowicz C*-algebra,

ZL(T) = C:y(T)” von Neumann algebra of T,

right regular representation p : C*(I) — B(¢°T),

adjoint representation ad = (A, p) o A : Gy (T) — B(¢2I),

trivial representation € : Cf;(T") — C,

[ is called unimodular if h is a trace, amenable if ¢ factors through .
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Introduction Main results

Analogies with free group C*-algebras

FO,, shares many (analytical) properties with usual free groups:
e [FO, is non amenable for n > 3 [Banica 1997];
o C',(FOy) is simple, Z(FO,) is a full factor [Vaes-V. 2005];
e FO, is K-amenable [Voigt 2009];
e [FO, is a-T-menable [Brannan 2011];

@ later in this talk : rapid decay, weak amenability, bi-exactness, ...

However : the first £2-Betti number of FO, vanishes [V. 2009].
Question : where do proper cocycles live 7

Main result of this talk [Fima-V.] :

e adoe=< A\ forFO,,

@ deformation of the identity by automorphisms.
Applications : fullness, property (HH), strong solidity...
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The adjoint representation Some classical results

Classical results
F, : free group on n generators. £(g) : length of g € F,,.

Recall the main results of [Haagerup 1979] :

e rapid decay : for x € C*(F,) supported on elements of length k,
MG < (k4 1)l|x][2, where [[x[|3 = h(x*x).

o a-T-menability : (g — e t&)g) defines a completely positive map
Ti o Cg(Fn) = Cry(Fn) forall t > 0.

Corollaries :

@ metric approximation property (MAP) for C¥ ;(F,) : there exists
My = Cq(Fn) = Clq(Fn) contractive with finite rank such that
Mo (x) — x for all x.

e states ¢ € C*(F,)% factor through X iff
(g — p(g)e t8)) is in £2(F,) for all t > 0.
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L CECPMINELEEETIN  Some classical results

Classical results

Application to ad : C*(F,) — B(£2F,).
The vector &y = de € (2(F,) is fixed » ad® = ad © ¢ on foL.

Consider ¢ : x = (dg]ad(x)dg) on C*(Fp).

We have ¢(h) =1 if hg = gh, ¢(h) = 0 else.

But C(g) ={h € F, | hg = gh} is cyclic for g # e:

C(g) = {wF | k € Z} with w = uvu™?, v cyclically reduced.
- non-zero values of @(h)e "t . e~t(klp+a) for h = wk.

Haagerup's characterization -+ ¢ < A for g # e.
Conclusion : ad® < \.
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QUCECISIN SIS Factorization through C*. 4 (FO,)

The quantum case

There is a natural “word length” on FO, : (?FO, = @pkszOn.
Definition : P, pil?FO, = Span{P(u;)é | deg P < k}.

Property of Rapid Decay :
Theorem (V. 2004)

If x € C*(FO,) is such that \(x)& C pxl’FO,, then
AN < (2K + 5)||x]|2-
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FactorizationithroughlG; 2o (BOx)
The quantum case

There is a natural “word length” on FO, : (’FO, = @ px’FO,.
Definition : @,Sk pil?FO, = Span{P(u;)é | deg P < k}.

A-T-menability :
Denote Uy the Chebyshev polynomials of the second kind.

Theorem (Brannan 2011)
For all t € ]2, n], the formula T¢(x)§ =, % prx&o
defines a completely positive map T, : C¥(FO,) — C* (FO,).
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FegizeEn dhiee Coaeh)
The quantum case

There is a natural “word length” on FO, : (’FO, = @ px’FO,.
Definition : @, pil?FO, = Span{P(u;)é | deg P < k}.

A-T-menability :
Denote Uy the Chebyshev polynomials of the second kind.

Theorem (Brannan 2011)
For all t € ]2, n], the formula T¢(x)§ =, % prx&o
defines a completely positive map T, : C¥(FO,) — C* (FO,).

Define ¢ € C*(FO,)* (unbounded) by:
U(x) = ke(x) if A(x)&o € pul?(FOp).

Corollary : states ¢ € C*(FO,)* factor through X iff pe~t is continuous
with respect to || - ||2 for all t > 0.
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3 ERECETINELIESE  The adjoint representation of FO,

On the adjoint representation

The line C& C £2T is invariant iff [ is unimodular.
— we can still consider ad® = ad © € on & C (2(FO,).

Theorem (Fima-V. 2012)
We have ad® < A for FO,,. J

Proof : use the preceeding criterium.

However : no combinatorial property of centralizers as in the classical case.
Instead : growth estimates for ¢ : x — (¢|ad(x)€), € € pl?(FO,), k > 1,
using computations in the category of corepresentations of FO,,.
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The adjoint representation The adjoint representation of FO,

On the adjoint representation

The line C& C £2T is invariant iff [ is unimodular.
— we can still consider ad® = ad © € on & C (2(FO,).

Theorem (Fima-V. 2012)
We have ad® < A for FO,,. J

Proof : use the preceeding criterium.

However : no combinatorial property of centralizers as in the classical case.
Instead : growth estimates for ¢ : x — (¢|ad(x)€), € € pl?(FO,), k > 1,
using computations in the category of corepresentations of FO,,.

First application :

Corollary (Vaes-V. 2005)

For n > 3, the representation ad® has spectral gap : ¢ £ ad®.
In particular FO, is not inner amenable and £ (FO,) is a full factor.
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A Deformation by automorphisms BRRTNC[S eI EYafel)]

The deformation

Action of O,
By definition there is a surjective map 7 : C*(FO,) = C(O;F) — C(0,).
By Fell's absorption principle, A factors to
A C(FO,) = CHFOR)RCEL(FO,).
We obtain an action of O, on C% (FO,) by automorphisms :
ag = ((evg om)®id) o A : G (FO,) — Ciy(FO,).

Deformation of C* (FO,) inside a bigger algebra
Put C = C%4(FO,) and C = C*,(FO,)®C*,(FO,)

re .,
t = Ayeq : € — C the natural embedding
E : C — +(C) unique trace-pres. cond. exp.

We deform ¢ by putting Ag(x) = (id®ag)t: C — C for g € O,.
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A Deformation by automorphisms ERNENCETEEVETT]

The deformation

Deformation of C (FO,) inside a bigger algebra

Put C = C*4(FO,) and C = Cy(FO,)®C: 4 (FO,)
t = Ayeq : C — C the natural embedding
E:C— t(C) unique trace-pres. cond. exp.
We deform ¢ by putting Ag(x) = (id®ag) : C — C for g € O,.

Proposition (Fima-V. 2012)
We have Eo Ay = T : C: 4 (FO,) = C4(FO,), where t = Tr(g). J

- recover complete positivity of Brannan's deformation.
- get deformation of C C C by 1-param. group of autom. (Ag,)scr.
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Applicationftolcocycles
Application to cocycles
Recall : a-T-menability < existence of a proper cocycle in some repr. 7.

Classical case F,, : natural proper cocycle ¢ given by paths in the Cayley
graph. In that case m = @, \.

[Brannan 2011] - proper cocycle for FO,. What can be said about 7 ?

Theorem (V. 2009)

For n > 3 we have H*(C[FO,], ¢*(FO,)) = 0.
All cocycles in (finite sums of) X\ are trivial.
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A Deformation by automorphisms BWAYsTe{[e=Yalei I feReleTe 7ol 1}

Application to cocycles
[Brannan 2011] - proper cocycle for FO,. What can be said about 7 ?

Concrete construction of a proper cocycle for FO,
Differentiate the deformation A, : get for all X € o,

- a derivation dx : C[FO,] — C & (C)
—+ a cocycle cx : C[FO,] — ¢3(FO,) © C&

Proposition (Fima-V. 2013)

For all X € 0, X # 0, cx is proper. The representation of FOp,
corresponding to the bimodule ,(c)C,(c) is ad.

In particular the cocycle arising from Brannan's deformation can be
realized inside m = ad®.

Corollary (Fima-V. 2013)
FO, satisfies Property strong (HH) form [Ozawa-Popa 2008]. J
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ApriiEztien i sieng sl
Application to strong solidity

Recall M is stronly solid if for every diffuse amenable P C M, the
normalizer .#}4(P) generates an amenable vN subalgebra.
strongly solid + non-amenable = prime + no Cartan subalgebra

[Chifan-Sinclair 2011, Popa-Vaes 2012] CBAP + AO™ = strongly solid

Theorem (V. 2004)
FO, satisifies a strong Akemann-Ostrand Property (AO* ).

Theorem (Freslon 2012)
FO, is weakly amenable (CBAP) with constant 1.

Theorem (Isono 2012)
Z(FO,) is strongly solid.
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ApriiEztien i sieng sl
Application to strong solidity

Recall M is stronly solid if for every diffuse amenable P C M, the
normalizer .#}4(P) generates an amenable vN subalgebra.
strongly solid + non-amenable = prime + no Cartan subalgebra

[Ozawa-Popa 2008] CBAP + strong (HH) = strongly solid

Corollary (Fima-V. 2013)
Z(FO0,) is strongly solid. J
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