

Stabilizer subgroups of universal compact quantum groups and the Connes embedding property

Roland Vergnioux

joint work with Benoît Collins and Michael Brannan

University of Normandy (France)

Paris, October 19th, 2015

Outline

1 Introduction

- Orthogonal free quantum groups
- Discrete quantum groups
- Main results

2 Stabilizer subgroups

- Generating subgroups
- Stabilizer subgroups of O_n^+
- Idea of the proof

3 Applications

- Connes' embedding property
- Free entropy dimension and microstates

Orthogonal free quantum groups

Wang's algebra defined by generators and relations:

$$A_o(n) = \langle u_{ij}, 1 \leq i, j \leq n \mid u_{ij} = u_{ij}^*, \quad (u_{ij}) \text{ unitary} \rangle.$$

Consider the discrete group $FO_n = (\mathbb{Z}/2\mathbb{Z})^{*n}$ and the compact group O_n .
 We have two interesting quotient maps:

$$\begin{aligned} A_o(n) &\rightarrow A_o(n)/I \simeq C^*(FO_n) \quad \text{with} \quad I = \langle u_{ij}, i \neq j \rangle, \\ A_o(n) &\rightarrow A_o(n)/J \simeq C(O_n) \quad \text{with} \quad J = \langle [u_{ij}, u_{kl}] \rangle. \end{aligned}$$

We denote $A_o(n) = C^*(FO_n) = C(O_n^+)$. There is a natural coproduct

$$\Delta : A_o(n) \rightarrow A_o(n) \otimes A_o(n), \quad u_{ij} \mapsto \sum_k u_{ik} \otimes u_{kj}.$$

→ FO_n is a discrete quantum group and O_n^+ is a compact quantum group:
 the “orthogonal free quantum group” and the “universal orthogonal
 quantum group”, dual to each other.

Discrete/Compact quantum groups

A Woronowicz C^* -algebra is a unital C^* -algebra A with $*$ -homomorphism $\Delta : A \rightarrow A \otimes A$ (coproduct) such that

- $(\Delta \otimes \text{id})\Delta = (\text{id} \otimes \Delta)\Delta$,
- $\Delta(A)(1 \otimes A)$ and $\Delta(A)(A \otimes 1)$ are dense in $A \otimes A$.

Notation : $A = C^*(\Gamma) = C(\mathbb{G})$.

Examples :

- G compact group, $A = C(G)$, $\Delta(f) = ((x, y) \mapsto f(xy))$, characterized by commutativity of A ;
- Γ discrete group, $A = C^*(\Gamma)$, $\Delta(g) = g \otimes g$ — but also $A = C_{\text{red}}^*(\Gamma)$, characterized by co-commutativity : $\Sigma\Delta = \Delta$.

Discrete/Compact quantum groups

A Woronowicz C^* -algebra is a unital C^* -algebra A with $*$ -homomorphism $\Delta : A \rightarrow A \otimes A$ (coproduct) such that

- $(\Delta \otimes \text{id})\Delta = (\text{id} \otimes \Delta)\Delta$,
- $\Delta(A)(1 \otimes A)$ and $\Delta(A)(A \otimes 1)$ are dense in $A \otimes A$.

Notation : $A = C^*(\mathbb{G}) = C(\mathbb{G})$.

General theory :

- Haar state $h \in C^*(\mathbb{G})^*$ \rightarrow GNS representation $\lambda : C^*(\mathbb{G}) \rightarrow B(\ell^2 \mathbb{G})$,
- $C_{\text{red}}^*(\mathbb{G}) = \lambda(C^*(\mathbb{G}))$ and $\mathcal{L}(\mathbb{G}) = C_{\text{red}}^*(\mathbb{G})''$,
- trivial representation / co-unit $\epsilon : C_{\text{f}}^*(\mathbb{G}) = C_{\text{f}}(\mathbb{G}) \rightarrow \mathbb{C}$,
- f.-d. corepresentations $v \in M_k(\mathbb{C}) \otimes C(\mathbb{G})$, intertwiners $T \in \text{Hom}_{\mathbb{G}}(v, w) \subset M_{l, k}(\mathbb{C})$.

\mathbb{G} is called unimodular if h is a trace, amenable if ϵ factors through λ .

Analogies with free group C^* -algebras

$\mathbb{F}O_n$ shares many properties with usual free groups.

On the operator algebraic side:

- $\mathbb{F}O_n$ is non amenable for $n \geq 3$ [Banica 1997];
- $C_{\text{red}}^*(\mathbb{F}O_n)$ is simple, $\mathcal{L}(\mathbb{F}O_n)$ is a full factor [Vaes-V. 2005];
- bi-exactness, rapid decay [V. 2005, 2007], K-amenability [Voigt 2011], a-T-menability [Brannan 2012], weak amenability [Freslon 2013], ...

Analogy with free group C^* -algebras

$\mathbb{F}O_n$ shares many properties with usual free groups.

On the free probability side:

- $\chi_1 = \sum u_{ii}$ is a semicircular variable with respect to h [Banica 1997];
- the elements $(\sqrt{n} u_{ij})_{i,j \leq s}$ are asymptotically free and semi-circular with respect to h as $n \rightarrow \infty$ [Banica-Collins 2007, Brannan 2014];
- computation of the spectral measure of u_{ij} with respect to h [Banica-Collins-Zinn-Justin 2009]; ...

Main result of this talk:

- the generators $u_{ij} \in C^*(\mathbb{F}O_n)$ admit matricial microstates (up to any order and precision) with respect to h (Connes' embedding property)

Strategy:

- $\mathbb{F}O_2$ is amenable, hence $\mathcal{L}(\mathbb{F}O_2) \subset R^\omega \rightarrow$ induction over n .
- O_n^+ is generated by two copies of O_{n-1}^+ .

Outline

1 Introduction

- Orthogonal free quantum groups
- Discrete quantum groups
- Main results

2 Stabilizer subgroups

- Generating subgroups
- Stabilizer subgroups of O_n^+
- Idea of the proof

3 Applications

- Connes' embedding property
- Free entropy dimension and microstates

Generating subgroups

\mathbb{G} compact quantum group with *full* Woronowicz C^* -algebra $C_f(\mathbb{G})$.

Closed subgroup $\mathbb{H} \subset \mathbb{G}$: compact quantum group with surjective Hopf- $*$ -homomorphism $\pi : C_f(\mathbb{G}) \twoheadrightarrow C_f(\mathbb{H})$.

Inner faithful $*$ -homomorphism $f : C_f(\mathbb{G}) \rightarrow B$: for any factorization

$$f : C_f(\mathbb{G}) \xrightarrow{\pi} C_f(\mathbb{H}) \xrightarrow{g} B$$

with π surjective Hopf- $*$ -homomorphism, π is an isomorphism.

Definition

Let $(\mathbb{H}_1, \pi_1), (\mathbb{H}_2, \pi_2)$ be closed subgroups of \mathbb{G} . Then $\mathbb{G} = \langle \mathbb{H}_1, \mathbb{H}_2 \rangle$ if $\pi_1 \oplus \pi_2 : C_f(\mathbb{G}) \rightarrow C_f(\mathbb{H}_1) \oplus C_f(\mathbb{H}_2)$ is inner faithful.

This is also equivalent to the inner faithfulness of

$$(\pi_1 \otimes \pi_2) \circ \Delta : C_f(\mathbb{G}) \rightarrow C_f(\mathbb{H}_1) \otimes C_f(\mathbb{H}_2).$$

Generating subgroups

Inner faithful $*$ -homomorphism $f : C_f(\mathbb{G}) \rightarrow B$: for any factorization

$$f : C_f(\mathbb{G}) \xrightarrow{\pi} C_f(\mathbb{H}) \xrightarrow{g} B$$

with π surjective Hopf- $*$ -homomorphism, π is an isomorphism.

Definition

Let $(\mathbb{H}_1, \pi_1), (\mathbb{H}_2, \pi_2)$ be closed subgroups of \mathbb{G} . Then $\mathbb{G} = \langle \mathbb{H}_1, \mathbb{H}_2 \rangle$ if $\pi_1 \oplus \pi_2 : C_f(\mathbb{G}) \rightarrow C_f(\mathbb{H}_1) \oplus C_f(\mathbb{H}_2)$ is inner faithful.

Restriction: $v \in M_n(\mathbb{C}) \otimes C_f(\mathbb{G})$ repr. of $\mathbb{G} + (\mathbb{H}, \pi)$ closed subgroup
 $\rightarrow v = (\text{id} \otimes \pi)(v)$ representation of \mathbb{H} .

Proposition

$$\mathbb{G} = \langle \mathbb{H}_1, \mathbb{H}_2 \rangle \iff \forall v, w \in \text{Rep}(\mathbb{G})$$

$$\text{Hom}_{\mathbb{G}}(v, w) = \text{Hom}_{\mathbb{H}_1}(v, w) \cap \text{Hom}_{\mathbb{H}_2}(v, w)$$

Examples

$H_1, H_2 \subset G$ classical compact groups \rightarrow usual notions.

$\mathbb{G} = \Gamma^\wedge$ dual of discrete group Γ

$\rightarrow \pi_i$ induced by surjective group morphisms $\pi_i : \Gamma \rightarrow \Gamma_i$.

$\rightarrow \Gamma^\wedge = \langle \Gamma_1^\wedge, \Gamma_2^\wedge \rangle \iff \Gamma \rightarrow \Gamma_1 \times \Gamma_2$ faithful.

Some subgroups of O_n^+ :

- $\rho : C(O_n^+) \rightarrow C(O_n)$, $[u_{ij}, u_{kl}] \rightarrow 0$.
- $\pi_i : C(O_n^+) \rightarrow C(O_{n-1,i}^+) \simeq C(O_{n-1}^+)$, $u_{ii} \rightarrow 1$.

Note that $O_{n-1,i}^+ \subset O_n^+$ is the stabilizer of $e_i \in \mathbb{C}^n$.

Theorem

For $n \geq 4$ and $i \neq j$ we have $O_n^+ = \langle O_{n-1,i}^+, O_{n-1,j}^+ \rangle = \langle O_{n-1,i}^+, O_n \rangle$.

Brauer diagrams

$P(k, l)$: set of partitions of k upper points and l lower points into pairs

$NCP(k, l) \subset P(k, l)$: partitions that can be represented by a boxed planar diagram with noncrossing strings

Let $H = \mathbb{C}^n$ and associate to $p \in P(k, l)$ the linear map $T_p : H^{\otimes k} \rightarrow H^{\otimes l}$:

$$T_p(e_{i_1} \otimes \cdots \otimes e_{i_k}) = \sum_j \binom{i_1 \dots i_k}{p \quad j_1 \dots j_l} e_{j_1} \otimes \cdots \otimes e_{j_l},$$

where the middle symbol is 1 if all blocs in p join pairs of equal indices, and 0 if not.

Then:

- $\text{Hom}_{O_n}(u^{\otimes k}, u^{\otimes l}) = \text{Span}\{T_p \mid p \in P(k, l)\}$ [Brauer],
- $\text{Hom}_{O_n^+}(u^{\otimes k}, u^{\otimes l}) = \text{Span}\{T_p \mid p \in NCP(k, l)\}$ [Banica].

A lemma of linear algebra

Denote $TCP(k, l) \subset P(k, l)$ the subset of diagrams where crossings are allowed only with lines that are connected to an upper point. Then:

Lemma

$$\text{Hom}_{O_{n-1,i}^+}(1, u^{\otimes k}) = \text{Span}\{ T_p(e_i \otimes \cdots \otimes e_i) \mid s \leq k, p \in TCP(s, k) \}$$

Put $\xi_s = e_1 \otimes \cdots \otimes e_1 \otimes e_2 + e_1 \otimes \cdots \otimes e_2 \otimes e_1 + \cdots + e_2 \otimes e_1 \otimes \cdots \otimes e_1 \in H^{\otimes s}$.

Lemma

We have $\text{Hom}_{O_{n-1,i}^+}(1, u^{\otimes k}) \cap \text{Hom}_{O_{n-1,j}^+}(1, u^{\otimes k}) = \text{Hom}_{O_n^+}(1, u^{\otimes k})$
 iff the family of vectors $\{ T_p(\xi_s) \mid 1 \leq s \leq k, p \in TCP(s, k) \}$ is linearly independant.

A lemma of linear algebra

Put $\xi_s = e_1 \otimes \cdots \otimes e_1 \otimes e_2 + e_1 \otimes \cdots \otimes e_2 \otimes e_1 + \cdots + e_2 \otimes e_1 \otimes \cdots \otimes e_1 \in H^{\otimes s}$.

Lemma

We have $\text{Hom}_{O_{n-1,i}^+}(1, u^{\otimes k}) \cap \text{Hom}_{O_{n-1,j}^+}(1, u^{\otimes k}) = \text{Hom}_{O_n^+}(1, u^{\otimes k})$
iff the family of vectors $\{T_p(\xi_s) \mid 1 \leq s \leq k, p \in \text{TCP}(s, k)\}$ is linearly independant.

Lemma

If $n \geq 4$, the independance property of the previous lemma is true for any k . As a result $O_n^+ = \langle O_{n-1,i}^+, O_{n-1,j}^+ \rangle$.

Moreover we have strong numerical evidence of:

Conjecture

The same is true for $n = 3$.

Outline

1 Introduction

- Orthogonal free quantum groups
- Discrete quantum groups
- Main results

2 Stabilizer subgroups

- Generating subgroups
- Stabilizer subgroups of O_n^+
- Idea of the proof

3 Applications

- Connes' embedding property
- Free entropy dimension and microstates

Connes' embedding property

Let R^ω be an ultrapower of the hyperfinite II_1 factor.

For A unital C^* -algebra, define

$$CEP(A) = \{\tau : A \rightarrow \mathbb{C} \text{ tracial state} \mid \pi_\tau(A)'' \hookrightarrow R^\omega \text{ tracially}\},$$

where π_τ is the GNS representation.

For Γ *unimodular* discrete quantum group: $CEP(\Gamma) = CEP(C_f^*(\Gamma))$.

We say that Γ is **hyperlinear** if $h \in CEP(\Gamma)$, i.e. if its von Neumann algebra $\mathcal{L}(\Gamma)$ embeds tracially in R^ω .

Proposition

- If $\tau_1, \tau_2 \in CEP(\Gamma)$ then $\tau_1 * \tau_2 = (\tau_1 \otimes \tau_2) \circ \Delta \in CEP(\Gamma)$.
- If $\tau_n \rightarrow \tau$ pointwise and $\tau_n \in CEP(\Gamma)$ then $\tau \in CEP(\Gamma)$.

Connes' embedding property

We say that Γ is **hyperlinear** if $h \in CEP(\Gamma)$, i.e. if its von Neumann algebra $\mathcal{L}(\Gamma)$ embeds tracially in R^ω .

Proposition

- If $\tau_1, \tau_2 \in CEP(\Gamma)$ then $\tau_1 * \tau_2 = (\tau_1 \otimes \tau_2) \circ \Delta \in CEP(\Gamma)$.
- If $\tau_n \rightarrow \tau$ pointwise and $\tau_n \in CEP(\Gamma)$ then $\tau \in CEP(\Gamma)$.

Let $(\mathbb{H}_1, \pi_1), (\mathbb{H}_2, \pi_2)$ be subgroups of \mathbb{G} .

Denote $h_i = h_{\mathbb{H}_i} \circ \pi_i : C_f^*(\mathbb{G}) \rightarrow \mathbb{C}$ and $h = h_{\mathbb{G}} : C_f^*(\mathbb{G}) \rightarrow \mathbb{C}$.

Proposition

We have $\mathbb{G} = \langle \mathbb{H}_1, \mathbb{H}_2 \rangle$ iff $h = \lim(h_1 * h_2)^{*n}$ pointwise.

Corollary

If $\mathbb{G} = \langle \mathbb{H}_1, \mathbb{H}_2 \rangle$ and $\hat{\mathbb{H}}_1, \hat{\mathbb{H}}_2$ are hyperlinear, then $\hat{\mathbb{G}}$ is hyperlinear.

Hyperlinearity of $\mathbb{F}O_n$

Corollary

If $\mathbb{G} = \langle \mathbb{H}_1, \mathbb{H}_2 \rangle$ and $\hat{\mathbb{H}}_1, \hat{\mathbb{H}}_2$ are hyperlinear, then $\hat{\mathbb{G}}$ is hyperlinear.

Recall that $\mathbb{F}O_n = \hat{O}_n^+$ and $O_n^+ = \langle O_{n-1,i}^+, O_{n-1,j}^+ \rangle$ for $n \geq 4$.

Moreover $\mathbb{F}O_2$ is hyperlinear because it is amenable.

→ $\mathbb{F}O_n$ hyperlinear for all n if $O_3^+ = \langle O_{2,i}^+, O_{2,j}^+ \rangle$.

Bypass to avoid the use of the conjecture at $n = 3$:

Lemma (after A. Chirvasitu)

We have $O_4^+ = \langle O_2^+ \hat{*} O_2^+, O_4 \rangle$.

Altogether:

Theorem

$\mathbb{F}O_n$ is hyperlinear for all $n \neq 3$.

Free entropy dimension

Denote by δ_0 Voiculescu's modified free entropy dimension.

Consequence of Connes' embedding property: we can apply Jung's "hyperfinite monotonicity" result. Since $\mathcal{L}(\mathbb{F}O_n)$ contains diffuse von Neumann subalgebras this yields:

Corollary

For the generators u_{ij} of $\mathcal{L}(\mathbb{F}O_n)$, $n \neq 3$, we have $1 \leq \delta_0(u_{ij})$.

Free entropy dimension

Denote by δ_0 Voiculescu's modified free entropy dimension.

Consequence of Connes' embedding property: we can apply Jung's "hyperfinite monotonicity" result. Since $\mathcal{L}(\mathbb{F}O_n)$ contains diffuse von Neumann subalgebras this yields:

Corollary

For the generators u_{ij} of $\mathcal{L}(\mathbb{F}O_n)$, $n \neq 3$, we have $1 \leq \delta_0(u_{ij})$.

On the other hand we have an upper bound coming from ℓ^2 -Betti numbers. More precisely

$$\delta_0(u_{ij}) \leq \delta^*(u_{ij}) \leq \beta_1^{(2)}(\mathbb{F}O_n) - \beta_0^{(2)}(\mathbb{F}O_n) + 1$$

by [Biane-Capitaine-Guionnet] and [Connes-Shlyakhtenko].

Free entropy dimension

On the other hand we have an upper bound coming from ℓ^2 -Betti numbers. More precisely

$$\delta_0(u_{ij}) \leq \delta^*(u_{ij}) \leq \beta_1^{(2)}(\mathbb{F}O_n) - \beta_0^{(2)}(\mathbb{F}O_n) + 1$$

by [Biane-Capitaine-Guionnet] and [Connes-Shlyakhtenko]. Moreover

Theorem (V. 2012)

We have $\beta_1^{(2)}(\mathbb{F}O_n) = 0$ for all $n \geq 3$.

Since $\mathbb{F}O_n$ is infinite we have $\beta_0^{(2)}(\mathbb{F}O_n) = 0$ [Kyed] and finally

Corollary

For the generators u_{ij} of $\mathcal{L}(\mathbb{F}O_n)$, $n \neq 3$, we have $\delta_0(u_{ij}) = 1$.