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Introduction Orthogonal free quantum groups

Orthogonal free quantum groups
Wang's algebra defined by generators and relations:
Ao(n) = (uy, 1 <i,j < n|uy=uj (uj) unitary).

Consider the discrete group FO, = (Z/27)*" and the compact group O,.
We have two interesting quotient maps:

Ao(n) = Ao(n)/l ~ C*(FO,) with | = (uj,i #j),
Ao(n) = Ao(n)/J ~ C(On)  with J = ([ujj, un]).

We denote A,(n) = C*(FO,) = C(O;"). There is a natural coproduct
A Ao(n) — Ao(n)®Ao(n), ujj — Zk Uik @ U .

-+ FO, is a discrete quantum group and O, is a compact quantum group:
the “orthogonal free quantum group” and the “universal orthogonal
quantum group”, dual to each other.
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Discrete/Compact quantum groups
A Woronowicz C*-algebra is a unital C*-algebra A with x-homomorphism
A : A— A®A (coproduct) such that

o (A®id)A = (Id®A)A,

o A(A)(1®A) and A(A)(A®1) are dense in AQA.
Notation : A= C*( ) = C(G).

Examples :

e G compact group, A= C(G), A(f) = ((x,y) — f(xy)),
characterized by commutativity of A ;

o [ discrete group, A= C*(I'), A(g) = gwg — but also A= C: (),
characterized by co-commutativity : XA = A.
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Introduction Discrete quantum groups

Discrete/Compact quantum groups

A Woronowicz C*-algebra is a unital C*-algebra A with x-homomorphism
A : A— A®A (coproduct) such that

o (A®id)A = (Id®A)A,
o A(A)(1®A) and A(A)(A®1) are dense in AQA.
Notation : A= C*( ) = C(G).

General theory :
@ Haar state h € C*( )* + GNS representation \ : C*( ) — B(¢? ),
° Cig( ) =AC"())and Z2( ) = Cq( )",
e trivial representation / co-unit € : () = G(G) — C,
o f.-d. corepresentations v € My (C)®C(G), intertwiners
T € Homg(v, w) C M, «(C).

is called unimodular if h is a trace, amenable if € factors through A.
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LT
Analogies with free group C*-algebras

FO, shares many properties with usual free groups.
On the operator algebraic side:
e [FO, is non amenable for n > 3 [Banica 1997];
o C,(FOy) is simple, Z(FO,) is a full factor [Vaes-V. 2005];
o bi-exactness, rapid decay [V. 2005, 2007], K-amenability [Voigt 2011],
a-T-menability [Brannan 2012], weak amenability [Freslon 2013], ...
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LT
Analogies with free group C*-algebras

FO, shares many properties with usual free groups.
On the free probability side:
@ x1 = Y uj is a semicircular variable with respect to h [Banica 1997];
o the elements (\/nujj); j<s are asymptotically free and semi-circular
with respect to h as n — oo [Banica-Collins 2007, Brannan 2014];
@ computation of the spectral measure of uj; with respect to h
[Banica-Collins-Zinn-Justin 2009]; ...

Main result of this talk:

o the generators uj; € C*(IFO,) admit matricial microstates (up to any
order and precision) with respect to h (Connes’ embedding property)
Strategy:
e [FO, is amenable, hence Z(FO,) C R¥ - induction over n.
e O, is generated by two copies of O,T_l.
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Stabilizer subgroups Generating subgroups

Generating subgroups

G compact quantum group with full Woronowicz C*-algebra C¢(G).

Closed subgroup H C G: compact quantum group with surjective

Hopf-*-homomorphism 7 : G¢(G) — C¢(H).

Inner faithful x-homomorphism f : G;(G) — B: for any factorization
f:G(G) 5 G(H) -5 B

with 7 surjective Hopf-x-homomorphism, 7 is an isomorphism.

Definition

Let (Hy, 1), (Hs, ) be closed subgroups of G. Then G = (Hj, Hy) if

m @ m: G(G) — G(H;) & G(Hy) is inner faithful.

This is also equivalent to the inner faithfullness of
(7T1®7T2) oA : Cf((G’) — Cf(H1)®Cf(H2).
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SIE NP5 Generating subgroups

Generating subgroups

Inner faithful x-homomorphism f : G¢(G) — B: for any factorization
f:G(G) = G(H) % B
with 7 surjective Hopf-x-homomorphism, 7 is an isomorphism.

Definition
Let (Hj,m1), (Hp, m2) be closed subgroups of G. Then G = (Hj, Hy) if
m @ G(G) = CG(H;) & CG(Hy) is inner faithful.

Restriction: v € M,(C)®C¢(G) repr. of G + (H, 7) closed subgroup
-+ v = (id®m)(v) representation of H.

Proposition

G = (Hy,H,) <= Vv, w € Rep(G)
Homg (v, w) = Homg, (v, w) N Homyg, (v, w)
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SE PS5 Stabilizer subgroups of O,',"

Examples

Hy, Ho C G classical compact groups =+ usual notions.
G =T" dual of discrete group '

-+ 7; induced by surjective group morphisms 7; : [ — T;.
»["=(I1"T") < T — 1 x '; faithful.

Some subgroups of O;F:

e p: C(Of) — C(On), [ujj, u] — 0.

o m: C(OF) = C(O;_,;) =~ C(Oy ), ui — 1.
Note that OF , . C O/ is the stabilizer of ¢; € C".

n—1,i
Theorem
For n >4 and i # j we have O} = (O

n—1,i’

+
On—l,j

)= <Or_1'_—1,i’ On). J
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Stabilizer subgroups Idea of the proof

Brauer diagrams

P(k,1): set of partitions of k upper points and / lower points into pairs
NCP(k, 1) C P(k,!): partitions that can be represented by a boxed planar
diagram with noncrossing strings

Let H = C" and associate to p € P(k, /) the linear map T, : H®k — H®':

.
To(ey®: - ®e;) = > < p )eh@---@ej,,

io\JL---di

where the middle symbol is 1 if all blocs in p join pairs of equal indices,
and 0 if not.

Then:
e Homog, (u®k, u®!) = Span{T, | p € P(k, 1)} [Brauer],
o Hom (u¥%, u®') = Span{T, | p € NCP(k,I)} [Banica].
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Stabilizer subgroups Idea of the proof

A lemma of linear algebra

Denote TCP(k,l) C P(k,!) the subset of diagrams where crossings are
allowed only with lines that are connected to an upper point. Then:

Lemma
Homp: (1, u®k) = Span{T,(e;®---®e;) | s < k,p € TCP(s, k)} J

Putés=e® - QeQe + Q- QeRe; +- -+ eRe® - ®e; € H®S,

Lemma

We have  Homg- (1, u®k ) N Homy: (1 u®*) = Hom ¢ (1, u®¥)
iff the family of vectors {Tp(&)|1<s< k ,p € TCP(s,k)} is linearly
independant.

Roland Vergnioux (Univ. Normandy) Stabilizer subgroups Paris, October 19th, 2015 10 / 14



Stabilizer subgroups Idea of the proof

A lemma of linear algebra

Puté&s = e1® - Qo106 + e@ - QeRe; + -+ e ® - - Qe € H®S.
Lemma

We have  Homg- (1, u®k ) N Homy: (1 u®*) = Hom ¢ (1, u®¥)

iff the family of vectors {Tp(&)|1<s< k ,p € TCP(s,k)} is linearly
independant.

Lemma

If n > 4, the independance property of the previous lemma is true for any
k. As a result Of = (0, ;, 0 ;).

n—1,i>

Moreover we have strong numerical evidence of:

Conjecture
The same is true for n = 3. J
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G G
Connes’ embedding property

Let R¥ be an ultrapower of the hyperfinite //; factor.
For A unital C*-algebra, define

CEP(A) = {7 : A — C tracial state | 7.(A)" — R“ tracially},
where 7, is the GNS representation.

For  unimodular discrete quantum group: CEP( )= CEP(C( )).
We say that is hyperlinear if h € CEP( ), i.e. if its von Neumann
algebra Z( ) embeds tracially in R¥.

Proposition
o Ifm, m € CEP( ) then 11 x 7 = (m®m) o A € CEP( ).
e If T, — T pointwise and 7, € CEP( ) then 7 € CEP( ).
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AGTILEE  Connes’ embedding property

Connes’ embedding property
We say that is hyperlinear if h € CEP( ), i.e. if its von Neumann
algebra .Z( ) embeds tracially in R¥.
Proposition
o Ifty, 7 € CEP( ) then 1 x 1p = (m®m2) o A € CEP( ).
e If T, — T pointwise and T, € CEP( ) then 7 € CEP( ).

Let (Hy, 1), (Hy, m2) be subgroups of G.
Denote h; = hy, om; : (f(G) — C and h = hg : Cf(G) — C.

Proposition
We have G = (Hjy, Hy) iff h = lim(hy % hp)*" pointwise.

Corollary

If G = (H;, Hy) and My, H, are hyperlinear, then G is hyperlinear.
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G G
Hyperlinearity of FO,

Corollary
If G = (H;, Hy) and iy, B, are hyperlinear, then Gis hyperlinear. J

Recall that FO,, = O,,* and O = (O:_L,-, O:_IJ) for n > 4.

Moreover FO; is hyperlinear because it is amenable.
—+ FO, hyperlinear for all nif O = (05, OL)

Bypass to avoid the use of the conjecture at n = 3:

Lemma (after A. Chirvasitu)

We have O, = (Oy %05, O4). J
Altogether:

Theorem

FO, is hyperlinear for all n # 3. J
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Applications Free entropy dimension and microstates

Free entropy dimension

Denote by dp Voiculescu's modified free entropy dimension.

Consequence of Connes’ embedding property: we can apply Jung’s

“hyperfinite monotonicity” result. Since .Z(FO,) contains diffuse von
Neumann subalgebras this yields:

Corollary
For the generators ujj of Z(FO,), n # 3, we have 1 < do(ujj). J
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Applications Free entropy dimension and microstates

Free entropy dimension

Denote by dp Voiculescu's modified free entropy dimension.

Consequence of Connes’ embedding property: we can apply Jung’s
“hyperfinite monotonicity” result. Since .Z(FO,) contains diffuse von
Neumann subalgebras this yields:

Corollary
For the generators ujj of Z(FO,), n # 3, we have 1 < do(ujj). J

On the other hand we have an upper bound coming from ¢?-Betti
numbers. More precisely

So(uz) < 8*(uz) < BP(FO,) — 57 (FO,) + 1

by [Biane-Capitaine-Guionnet] and [Connes-Shlyakhtenko].
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Applications Free entropy dimension and microstates

Free entropy dimension

On the other hand we have an upper bound coming from ¢?-Betti
numbers. More precisely

Bo(uy) < 8" (uz) < B1(FO,) — 55" (FO,) + 1
by [Biane-Capitaine-Guionnet] and [Connes-Shlyakhtenko]. Moreover

Theorem (V. 2012)
We have ﬂ£2)(IE‘O,,) =0 for all n > 3. J

Since FO, is infinite we have ﬁ(()Q)(IFO,,) = 0 [Kyed] and finally

Corollary
For the generators uj; of Z(FO,), n # 3, we have éo(u;) = 1. J
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