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Orthogonal free quantum groups
Orthogonal free quantum groups
Wang’s algebra defined by generators and relations:
Ao(n) = (uj, 1 < iy j < n | uy=uj, (uj) unitary).

It comes with a natural “group-like” structure:

A Ag(n) = Ao(n)®@Ao(n), uj — >4 up®uy.
Why “group-like”?

We have Ao(n) - C(Oy), ujj — (g + gjj) and A induces
A C(0n) = C(0n)@C(0n), A(f)(g, h) = f(gh).
One can recover the compact group O, from (C(O,), A).

We denote A,(n) = C(O;}), where O, is a compact quantum group.
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Introduction Orthogonal free quantum groups

Orthogonal free quantum groups
Wang’s algebra defined by generators and relations:
Ao(n) = (uj, 1 < iy j < n | uy=uj, (uj) unitary).

It comes with a natural “group-like” structure:

A Ag(n) = Ao(n)®@Ao(n), uj — >4 up®uy.
Why “group-like”?

We have Ao(n) - C, = C*((Z/2Z)*"), ujj — 0j;b; and A induces
A:C— GRC,, g— grg for g € C*((Z/2Z)").
One can recover (Z/2Z)*" as {u € % (Cy) | A(u) = u® u}.

We denote A,(n) = C*(FO,), where FO, is a discrete quantum group.
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Discrete/Compact quantum groups

A Woronowicz C*-algebra is a unital C*-algebra A with x-homomorphism
A A— A®A (coproduct) such that

o (ARIA)A = (iId®A)A,

o A(A)(1®A) and A(A)(A®1) are dense in AQA.
Notation : A= C*( ) = C(G).

General theory : Haar state, Peter-Weyl, Tannaka-Krein...

Theorem (Woronowicz)

There exists a unique state h: C*( ) — C such that
(h®id)A = (id® h)A =1@ h.

- regular representation A : C*( ) — B(H),
- reduced Woronowicz C*-algebra C,( ) = A(C*( )),
- von Neumann algebra Z( ) = C},( )" C B(H).
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The von Neumann slgebra 2 (FOy)
Known results about .Z(FO,)

We restrict to the case n > 3.

Free probability:

o the elements (\/n ujj); j<s are asymptotically free and semi-circular
with respect to h as n — oo [Banica-Collins 2007, Brannan 2014];

o free entropy dimension of the generators : dp(u) =1
[Brannan-Collins-V. 2012, 2016].

Von Neumann algebra:
o Z(FO,) is not injective [Banica 1997]
e it is a full and solid /; factor [Vaes-V. 2007]
e it has the HAP and the CBAP [Brannan 2012, Freslon 2013]
@ it is strongly solid [Isono 2015, Fima-V. 2015]

Question: is .Z(FO,) isomorphic to a free group factor?
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The von Neumann slgebra 2 (FOy)
Known results about .Z(FO,)

We restrict to the case n > 3.
Free probability:

o free entropy dimension of the generators : dp(u) =1
[Brannan-Collins-V. 2012, 2016].

Question: is Z(FO,) isomorphic to a free group factor?

In Z(F,) with canonical generators a; one has dg(a) = n.
But it is not known whether §g is an invariant of the von Neumann algebra.
However strong 1-boundedness is an invariant [Jung 2007]...
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Free entropy dimension Free entropy

Free entropy

(M, 7): finite von Neumann algebra with fixed trace 7. H = L?>(M, 7).
Fix a tuple of self-adjoint elements x = (x1,...,xm) € M™.

X(x) : microstates free entropy / x*(x) : non microstates free entropy.
Properties of x and x*: [Voiculescul]
o x(x) e RU{—o0}, x(x;) = [[In]s — t]dxi(s)dxi(t) + C.

o x(x) < x(x1) + -+ x(xm) with equality if x1, ..., xn, are freely
independant.

@ only for x: assuming x(x;) > —oo, equality in the previous point
implies free independance.
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Free entropy dimension Free entropy

Free entropy

(M, 7): finite von Neumann algebra with fixed trace 7. H = L?>(M, 7).
Fix a tuple of self-adjoint elements x = (x1,...,xm) € M™.
X(x) : microstates free entropy / x*(x) : non microstates free entropy.

Free entropy dimension. [Voiculescu]
Assume M contains a free family s = (si,...,sm) of (0, 1)-semicircular
elements, also free from x. One defines:

do(x) = m—liminfs_0 x(x+ds:5s)/Ind

5*(x) = m—liminfs_0 x*(x + ds)/Ind
do(x) only depends on the algebra generated by x. It is not known whether
it only depends on the von Neumann algebra.
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Free entropy dimension Free entropy

Free entropy

(M, 7): finite von Neumann algebra with fixed trace 7. H = L?>(M, 7).
Fix a tuple of self-adjoint elements x = (x1,...,xm) € M™.
X(x) : microstates free entropy / x*(x) : non microstates free entropy.

Free entropy dimension. [Voiculescu]
Assume M contains a free family s = (si,...,sm) of (0, 1)-semicircular
elements, also free from x. One defines:

do(x) = m—liminfs_0 x(x+ds:5s)/Ind

5*(x) = m—liminfs_0 x*(x + ds)/Ind

do(x) only depends on the algebra generated by x. It is not known whether
it only depends on the von Neumann algebra.
We have the following deep result:

Theorem (Biane-Capitaine-Guionnet 2003)
We have x(x) < x*(x), hence dp(x) < 0*(x). J
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The case of FOy
The case of FO,

Theorem (Jung 2006)
If W*(x) embeds in R“ and contains a diffuse subalgebra, then dp(x) > 1.J

In Z(FO,), the subalgebra (3 uji)"” ~ L*°([-2,2]) is diffuse.
[Brannan-Collins-V. 2014]: for n # 3, Z(FO,) embeds in R*.

Theorem (Connes-Shlyakhtenko 2005)
We have 5*(x) < B2 (A, 7) — B(A, 1) + 1 where A = C(x). J

By diffuseness, B(()z)(A, h) = (()2)(15‘0,,) =0 [Kyed].
[V. 2012, Kyed-Raum-Vaes-Valvekens 2017]: 5%2)(]}?0,,) =0.

Corollary
For n > 3 we have do(u) = 6*(u) =1 in L(FO,). J
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1-boundedness and von Neumann isomorphisms

Recall that §*(x) = m — liminfs_o x*(x + ds)/In 4.
Hence 0*(x) < a iff x*(x + ds) < (o — m)|Ind| + o(In ) as 6 — 0.
One says that x is a-bounded for §* if
X*(x +0s) < (a—m)|Ind|+ K
for small 6 and some constant K.
There is a similar notion of a-boundedness for dy [Jung].

Theorem (Jung 2007)

If x is 1-bounded for 6y and x(x;) > —oo for at least one i, then any tuple
y of generators of W*(x) is 1-bounded for g (hence dp(y) < 1).

In particular if M is generated by a 1-bounded tuple of generators, it is not
isomorphic to any free group factor.
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Proving 1-boundedness

Consider the algebra of polynomials in m non-commuting variables C(X)
C(Xi,...,Xm). There are unique derivations

di : C(X) — C(X) @ C(X)
such that §;(Xj) = 0;;(1® 1), with the bimodule structure P- (Q®R)-S =
PQ ® RS. One has e.g.

81(X2X1X§X1X4) =X ® X§X1X4 + X2X1X32 R Xa.
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1-boundedness 1-boundedness

Proving 1-boundedness

Consider the algebra of polynomials in m non-commuting variables C(X) =
C(Xi,...,Xm). There are unique derivations d; such that 6;(Xj) = 9;;(1®1).
For P = (Py,...,P)) € C(X)!, put

OP = (9;P;) € C(X) ® C(X) ® B(C™,C).

Denote H = L?(M, 7). Evaluating at X = x one obtains an operator
OP(x) e BH®H®C™ Ho H®C),
which commutes to the right action ((®¢&) - (x®y) = (x® y& of M@ M°
on H® H. One considers the Murray-von Neumann dimension:
rank P(x) = dimpgme Im OP(x).

Theorem (Jung 2016, Shlyakhtenko 2016)

Assume that x satisfies the identities P(x) = 0 and that OP(x) is of
determinant class. Then x is a-bounded for 69 and §*, with
a = m — rank OP(x).
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Relations in FO,
We take m = n?, X = (X,J),J € C(Xj) @ My(C), x = u = (ujj)j.

We consider the | = 2n? canonical relations:
P=(P,P)=(XX-1,XX*-1)e C(X)® I\/I,,(C)692

Following [Shlyakhtenko 2016] it is easy to prove that:
Proposition
We have n? — rank OP(u) = ﬂ£ (FO,) — 5(2)( Op)+1=1. J

Hence if OP(u) is of determinant class, Jung—Shlyakhtenko's result allows
to conclude that v is 1-bounded.

In the case of a discrete group I', this would follow from Liick's
determinant conjecture, which holds e.g. if I is sofic. In the quantum
case, there is no such tool (yet?) to prove the determinant conjecture...
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The case of FO,
Computation of P (u)

Determinant class: (h® h® Tr)(In.(OP(u)*0P(u))) > —oc.

Identify M,(C) ~ p1H = Span{u;jéo} C H.
Then u € C;(FO,) ® My(C) acts by left mult. on H® p1H.
If S: H— H is the antipode, we have in B(H® H ® p1H):

OP1(u) =(1®S®@S)un(l®S®1)+ uj;
OP(u)=(10S®@S)us(lesS®S)+us(leles)

Proposition
We have OP1(u)*0P1(u) = 0P>(u)*0P>(u) and it is unitarily conjugated
to(2+2Re®©)® 1€ B(H® ptH ® H), where

©=(5®1)u(S®S) e B(H® p1H).

Fact: © is the reversing operator of the quantum Cayley graph of FO,!
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Decomposing the quantum Cayley graph
Classical case
For A= A1 CT, the Cayley graph of (I',A) is given by

X(O) =T, X(l) =[x A,
0 : X(l) — X(O) X X(O)v(ga h) = (gagh)'
0: XV - X (g, h)— (gh, h1).

Consider H = (2(T"), ptH = (?(N), u = diag(\(g))gen, S(g) = g~*. Then:
Ogoh) =(S®u(S®S)(g@h) =gh® h™™.
We have ©%2 =1, H® p1H = Ker(© — 1) @ Ker(© + 1).
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Decomposing the quantum Cayley graph

Classical case
We have ©2 =1, H® p1H = Ker(© — 1) @ Ker(© + 1).

Quantum case
We have ©2 # 1, Ker(© — 1) @ Ker(© + 1) & H® p1H. The description
of Ker(© £ 1) was an essential tool in the proof of Bgz)(IFO,,) =0.

Theorem

On Ker(© — 1)+ NKer(© + 1), Re(©) ~ @ Re(r,) is an infinite direct
sum of real parts of weighted right shifts r,,.

Lemma

For any right shift r with weights in ]0,1], 2+ 2Rer is of determinant
class with respect to the specific state coming from h ® Tr.
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Conclusion

Finally one can apply Jung-Shlyakhtenko's result:

Corollary

The generating matrix u is 1-bounded in £ (FO,).
Z(FO0,) is not isomorphic to a free group factor.

Next questions...
e Is there a group I such that Z(FO,) ~ .£(')?
e What about Z(FO(Q)) — the type /Il case?
e What about Z(FU,)? Recall that Z(FU,) ~ Z(F2).
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