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Introduction Orthogonal free quantum groups

Orthogonal free quantum groups

Wang’s algebra defined by generators and relations:

Ao(n) = 〈uij , 1 ≤ i , j ≤ n | uij = u∗ij , (uij) unitary〉.

It comes with a natural “group-like” structure:

∆ : Ao(n)→ Ao(n)⊗Ao(n), uij 7→
∑

k uik⊗ukj .

Why “group-like”?

We have Ao(n)� C (On), uij 7→ (g 7→ gij) and ∆ induces

∆ : C (On)→ C (On)⊗C (On), ∆(f )(g , h) = f (gh).

One can recover the compact group On from (C (On),∆).

We denote Ao(n) = C (O+
n ), where O+

n is a compact quantum group.
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Introduction Orthogonal free quantum groups

Orthogonal free quantum groups

Wang’s algebra defined by generators and relations:

Ao(n) = 〈uij , 1 ≤ i , j ≤ n | uij = u∗ij , (uij) unitary〉.

It comes with a natural “group-like” structure:

∆ : Ao(n)→ Ao(n)⊗Ao(n), uij 7→
∑

k uik⊗ukj .

Why “group-like”?

We have Ao(n)� Cn = C ∗((Z/2Z)∗n), uij 7→ δijbi and ∆ induces

∆ : Cn → Cn⊗Cn, g 7→ g⊗g for g ∈ C ∗((Z/2Z)∗n).

One can recover (Z/2Z)∗n as {u ∈ U (Cn) | ∆(u) = u ⊗ u}.

We denote Ao(n) = C ∗(FOn), where FOn is a discrete quantum group.
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Introduction Orthogonal free quantum groups

Discrete/Compact quantum groups

A Woronowicz C ∗-algebra is a unital C ∗-algebra A with ∗-homomorphism
∆ : A→ A⊗A (coproduct) such that

(∆⊗id)∆ = (id⊗∆)∆,

∆(A)(1⊗A) and ∆(A)(A⊗1) are dense in A⊗A.

Notation : A = C ∗(�) = C (G).

General theory : Haar state, Peter-Weyl, Tannaka-Krein...

Theorem (Woronowicz)

There exists a unique state h : C ∗(�)→ C such that
(h ⊗ id)∆ = (id⊗ h)∆ = 1⊗ h.

I regular representation λ : C ∗(�)→ B(H),
I reduced Woronowicz C ∗-algebra C ∗red(�) = λ(C ∗(�)),
I von Neumann algebra L (�) = C ∗red(�)′′ ⊂ B(H).
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Introduction The von Neumann algebra L (FOn)

Known results about L (FOn)

We restrict to the case n ≥ 3.

Free probability:

the elements (
√
n uij)i ,j≤s are asymptotically free and semi-circular

with respect to h as n→∞ [Banica-Collins 2007, Brannan 2014];

free entropy dimension of the generators : δ0(u) = 1
[Brannan-Collins-V. 2012, 2016].

Von Neumann algebra:

L (FOn) is not injective [Banica 1997]

it is a full and solid II1 factor [Vaes-V. 2007]

it has the HAP and the CBAP [Brannan 2012, Freslon 2013]

it is strongly solid [Isono 2015, Fima-V. 2015]

Question: is L (FOn) isomorphic to a free group factor?
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Introduction The von Neumann algebra L (FOn)

Known results about L (FOn)

We restrict to the case n ≥ 3.

Free probability:

free entropy dimension of the generators : δ0(u) = 1
[Brannan-Collins-V. 2012, 2016].

Question: is L (FOn) isomorphic to a free group factor?

In L (Fn) with canonical generators ai one has δ0(a) = n.
But it is not known whether δ0 is an invariant of the von Neumann algebra.
However strong 1-boundedness is an invariant [Jung 2007]...
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Free entropy dimension Free entropy

Free entropy

(M, τ): finite von Neumann algebra with fixed trace τ . H = L2(M, τ).
Fix a tuple of self-adjoint elements x = (x1, . . . , xm) ∈ Mm.
χ(x) : microstates free entropy / χ∗(x) : non microstates free entropy.

Properties of χ and χ∗: [Voiculescu]

χ(x) ∈ R ∪ {−∞}, χ(xi ) =
∫∫

ln |s − t|dxi (s)dxi (t) + C .

χ(x) ≤ χ(x1) + · · ·+ χ(xm) with equality if x1, . . . , xm are freely
independant.

only for χ: assuming χ(xi ) > −∞, equality in the previous point
implies free independance.
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Free entropy dimension Free entropy

Free entropy

(M, τ): finite von Neumann algebra with fixed trace τ . H = L2(M, τ).
Fix a tuple of self-adjoint elements x = (x1, . . . , xm) ∈ Mm.
χ(x) : microstates free entropy / χ∗(x) : non microstates free entropy.

Free entropy dimension. [Voiculescu]
Assume M contains a free family s = (s1, . . . , sm) of (0, 1)-semicircular
elements, also free from x . One defines:

δ0(x) = m − lim infδ→0 χ(x + δs : s)/ ln δ
δ∗(x) = m − lim infδ→0 χ

∗(x + δs)/ ln δ
δ0(x) only depends on the algebra generated by x . It is not known whether
it only depends on the von Neumann algebra.
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Free entropy dimension Free entropy

Free entropy

(M, τ): finite von Neumann algebra with fixed trace τ . H = L2(M, τ).
Fix a tuple of self-adjoint elements x = (x1, . . . , xm) ∈ Mm.
χ(x) : microstates free entropy / χ∗(x) : non microstates free entropy.

Free entropy dimension. [Voiculescu]
Assume M contains a free family s = (s1, . . . , sm) of (0, 1)-semicircular
elements, also free from x . One defines:

δ0(x) = m − lim infδ→0 χ(x + δs : s)/ ln δ
δ∗(x) = m − lim infδ→0 χ

∗(x + δs)/ ln δ
δ0(x) only depends on the algebra generated by x . It is not known whether
it only depends on the von Neumann algebra.
We have the following deep result:

Theorem (Biane-Capitaine-Guionnet 2003)

We have χ(x) ≤ χ∗(x), hence δ0(x) ≤ δ∗(x).
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Free entropy dimension The case of FOn

The case of FOn

Theorem (Jung 2006)

If W ∗(x) embeds in Rω and contains a diffuse subalgebra, then δ0(x) ≥ 1.

In L (FOn), the subalgebra (
∑

uii )
′′ ' L∞([−2, 2]) is diffuse.

[Brannan-Collins-V. 2014]: for n 6= 3, L (FOn) embeds in Rω.

Theorem (Connes-Shlyakhtenko 2005)

We have δ∗(x) ≤ β(2)
1 (A, τ)− β(2)

0 (A, τ) + 1 where A = C〈x〉.

By diffuseness, β
(2)
0 (A, h) = β

(2)
0 (FOn) = 0 [Kyed].

[V. 2012, Kyed-Raum-Vaes-Valvekens 2017]: β
(2)
1 (FOn) = 0.

Corollary

For n > 3 we have δ0(u) = δ∗(u) = 1 in L (FOn).
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1-boundedness 1-boundedness

1-boundedness and von Neumann isomorphisms

Recall that δ∗(x) = m − lim infδ→0 χ
∗(x + δs)/ ln δ.

Hence δ∗(x) ≤ α iff χ∗(x + δs) ≤ (α−m)| ln δ|+ o(ln δ) as δ → 0.

One says that x is α-bounded for δ∗ if
χ∗(x + δs) ≤ (α−m)| ln δ|+ K

for small δ and some constant K .
There is a similar notion of α-boundedness for δ0 [Jung].

Theorem (Jung 2007)

If x is 1-bounded for δ0 and χ(xi ) > −∞ for at least one i , then any tuple
y of generators of W ∗(x) is 1-bounded for δ0 (hence δ0(y) ≤ 1).

In particular if M is generated by a 1-bounded tuple of generators, it is not
isomorphic to any free group factor.
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1-boundedness 1-boundedness

Proving 1-boundedness

Consider the algebra of polynomials in m non-commuting variables C〈X 〉 =
C〈X1, . . . ,Xm〉. There are unique derivations

δi : C〈X 〉 → C〈X 〉 ⊗ C〈X 〉
such that δi (Xj) = δij(1⊗ 1), with the bimodule structure P · (Q⊗R) ·S =
PQ ⊗ RS . One has e.g.

∂1(X2X1X
2
3 X1X4) = X2 ⊗ X 2

3 X1X4 + X2X1X
2
3 ⊗ X4.
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1-boundedness 1-boundedness

Proving 1-boundedness

Consider the algebra of polynomials in m non-commuting variables C〈X 〉 =
C〈X1, . . . ,Xm〉. There are unique derivations δi such that δi (Xj) = δij(1⊗1).
For P = (P1, . . . ,Pl) ∈ C〈X 〉l , put

∂P = (∂jPi ) ∈ C〈X 〉 ⊗ C〈X 〉 ⊗ B(Cm,Cl).

Denote H = L2(M, τ). Evaluating at X = x one obtains an operator
∂P(x) ∈ B(H ⊗ H ⊗ Cm,H ⊗ H ⊗ Cl),

which commutes to the right action (ζ ⊗ ξ) · (x ⊗ y) = ζx ⊗ yξ of M ⊗M◦

on H ⊗ H. One considers the Murray-von Neumann dimension:
rank ∂P(x) = dimM⊗M◦ Im ∂P(x).

Theorem (Jung 2016, Shlyakhtenko 2016)

Assume that x satisfies the identities P(x) = 0 and that ∂P(x) is of
determinant class. Then x is α-bounded for δ0 and δ∗, with

α = m − rank ∂P(x).
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1-boundedness The case of FOn

Relations in FOn

We take m = n2, X = (Xij)ij ∈ C〈Xij〉 ⊗Mn(C), x = u = (uij)ij .
We consider the l = 2n2 canonical relations:

P = (P1,P2) = (X tX − 1,XX t − 1) ∈ C〈X 〉 ⊗Mn(C)⊕2.

Following [Shlyakhtenko 2016] it is easy to prove that:

Proposition

We have n2 − rank ∂P(u) = β
(2)
1 (FOn)− β(2)

0 (FOn) + 1 = 1.

Hence if ∂P(u) is of determinant class, Jung–Shlyakhtenko’s result allows
to conclude that u is 1-bounded.

In the case of a discrete group Γ, this would follow from Lück’s
determinant conjecture, which holds e.g. if Γ is sofic. In the quantum
case, there is no such tool (yet?) to prove the determinant conjecture...
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1-boundedness The case of FOn

Computation of ∂P(u)

Determinant class: (h ⊗ h ⊗ Tr)(ln+(∂P(u)∗∂P(u))) > −∞.

Identify Mn(C) ' p1H = Span{uijξ0} ⊂ H.
Then u ∈ C ∗red(FOn)⊗Mn(C) acts by left mult. on H ⊗ p1H.
If S : H → H is the antipode, we have in B(H ⊗ H ⊗ p1H):

∂P1(u) = (1⊗ S ⊗ S)u23(1⊗ S ⊗ 1) + u∗13

∂P2(u) = (1⊗ S ⊗ S)u∗23(1⊗ S ⊗ S) + u13(1⊗ 1⊗ S)

Proposition

We have ∂P1(u)∗∂P1(u) = ∂P2(u)∗∂P2(u) and it is unitarily conjugated
to (2 + 2ReΘ)⊗ 1 ∈ B(H ⊗ p1H ⊗ H), where

Θ = (S ⊗ 1)u(S ⊗ S) ∈ B(H ⊗ p1H).

Fact: Θ is the reversing operator of the quantum Cayley graph of FOn!
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1-boundedness The quantum Cayley graph

Decomposing the quantum Cayley graph

Classical case
For Λ = Λ−1 ⊂ Γ, the Cayley graph of (Γ,Λ) is given by

X (0) = Γ, X (1) = Γ× Λ,
∂ : X (1) → X (0) × X (0), (g , h) 7→ (g , gh),
θ : X (1) → X (1), (g , h) 7→ (gh, h−1).

Consider H = `2(Γ), p1H = `2(Λ), u = diag(λ(g))g∈Λ, S(g) = g−1. Then:

Θ(g ⊗ h) = (S ⊗ 1)u(S ⊗ S)(g ⊗ h) = gh ⊗ h−1.

We have Θ2 = 1, H ⊗ p1H = Ker(Θ− 1)⊕Ker(Θ + 1).
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1-boundedness The quantum Cayley graph

Decomposing the quantum Cayley graph

Classical case
We have Θ2 = 1, H ⊗ p1H = Ker(Θ− 1)⊕Ker(Θ + 1).

Quantum case
We have Θ2 6= 1, Ker(Θ − 1) ⊕ Ker(Θ + 1)  H ⊗ p1H. The description

of Ker(Θ± 1) was an essential tool in the proof of β
(2)
1 (FOn) = 0.

Theorem

On Ker(Θ− 1)⊥ ∩Ker(Θ + 1)⊥, Re(Θ) '
⊕

Re(rα) is an infinite direct
sum of real parts of weighted right shifts rα.

Lemma

For any right shift r with weights in ]0, 1], 2 + 2Re r is of determinant
class with respect to the specific state coming from h ⊗ Tr.
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1-boundedness The quantum Cayley graph

Conclusion

Finally one can apply Jung-Shlyakhtenko’s result:

Corollary

The generating matrix u is 1-bounded in L (FOn).
L (FOn) is not isomorphic to a free group factor.

Next questions...

Is there a group Γ such that L (FOn) ' L (Γ)?

What about L (FO(Q)) — the type III case?

What about L (FUn)? Recall that L (FU2) ' L (F2).
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