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Introduction Rapid Decay and applications

Rapid Decay and applications

Property of Rapid Decay (RD) / Haagerup’s inequality
I Classical case: [Haagerup 1978] free groups
I Quantum case (unimodular): [V. 2007]
I Non-unimodular case: [Vaes-V. 2007],

[Bhowmick–Voigt–Zacharias 2015]
I Update: [Brannan–V.–Youn 2021]

Applications
I Structure of operator algebras [Haagerup 1978, ...]
I K -theory [Jolissaint 1989, Lafforgue 2002]
I Compact quantum metric spaces [Antonescu–Christensen 2004]
I Quantum information theory [Brannan–Collins 2018]
I Hypercontractivity results [Biane 1997, ...]
I ...
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Introduction Discrete and compact quantum groups

Quantum groups (1)

A compact quantum group G and its discrete dual � are given by a regular
multiplicative unitary V ∈ B(H ⊗ H) with a unique fixed line Cξ0 ⊂ H —
i.e. we have V12V13V23 = V23V12 and V (ξ0 ⊗ ζ) = (ξ0 ⊗ ζ) for all ζ ∈ H.

The associated Hopf-C ∗-algebras are
C (G) = C ∗red(�) = {(ω ⊗ id)(V ) | ω ∈ B(H)∗}̄
C ∗(G) = c0(�) = {(id⊗ ω)(V ) | ω ∈ B(H)∗}̄

with coproducts induced by V . If ξ0 is a normed fixed vector, it is cyclic
and separating for C (G) and h = ωξ0 is the Haar state of C (G). We
denote H = L2(G).

The (inverse) Fourier transform is
F : C (G)→ M(C ∗(G)), x 7→ (id⊗ h)(V ∗(1⊗ x)) ,

it is isometric wrt the 2-norms associated with h and the normalized left
Haar weight ĥL. We write H = L2(G) = `2(�).
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Introduction Discrete and compact quantum groups

Quantum groups (2)

The interesting C ∗-algebra is C (G) = C ∗red(�).

The dual algebra is very simple:
C ∗(G) = c0(�) '

⊕c0
α∈I B(Hα) with dimHα <∞.

We denote I = Irr(�) = Irr(G).
The left and right invariant weights on c0(�) are

ĥL(a) =
∑

qd(α)Tr(Fαaα), ĥR(a) =
∑

qd(α)Tr(F−1α aα)
where the Fα are Woronowicz’ modular matrices and
qd(α) = Tr(Fα) = Tr(F−1α ) is the quantum dimension of α.

� unimodular / G of Kac type: h tracial ⇔ ∀α Fα = idα ⇔ ĥL = ĥR .

Thank to the coproduct, the category of f.-d. ∗-representations of c0(�) is
in fact a tensor C ∗-category, and it is rigid. We have e.g. fusion rules
α⊗ β '

⊕
mγ
α,βγ for α, β ∈ Irr(�). We write γ ⊂ α⊗ β if mγ

α,β 6= 0.
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Introduction Free quantum groups

Orthogonal free quantum groups

N ∈ N∗, Q ∈ GLN(C), QQ̄ = ±IN I discrete FO(Q), compact O+(Q).

The full C ∗-algebra C ∗(FO(Q)) can be defined by generators uij and
matricial relations uu∗ = u∗u = 1, u = QūQ−1. [Van Daele–Wang]

The tensor category of representations of c0(FO(Q)) is the
Temperly-Lieb category TLq, with q + q−1 = Tr(Q∗Q), together with
a specific tensor functor TLq → Hilb. [Banica]

Irr(�) = {αn | n ∈ N}, α0 = 1, α1 = u, αn ⊗ α1 = αn−1 ⊕ αn+1.
We have qd(αn) = Un(q + q−1), where (Un)n are type-II Chebychev.

Connection to classical groups for FO(IN) =: FON and O+(IN) =: O+
N

C ∗(FON) / 〈uij ; i 6= j〉 ' C ∗((Z/2Z)∗N),

C (O+
N ) / 〈[uij , ukl ]〉 ' C (ON).
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Rapid Decay Property RD

Rapid Decay

Fix a discrete quantum group �. Length function: ` : Irr(�)→ N s.t.
`(1) = 0, `(ᾱ) = `(α), `(γ) ≤ `(α) + `(β) if γ ⊂ α⊗ β.

Example: if Irr(�) is generated by D = D̄, word length
`(α) = min{k | ∃β1, . . . , βk ∈ D α ⊂ β1 ⊗ · · · ⊗ βk}.

Denote pα = idα ∈ c0(�), pn =
∑
{pα | `(α) = n} ∈ M(c0(�)).

Definition (V. 2007)

� has Property RD (with respect to `) if there exists P ∈ R[X ] s.t.
∀n ∈ N ∀x ∈ C ∗red(�) F (x) ∈ pnc0(�)⇒ ‖x‖ ≤ P(n)‖F (x)‖2.

Characterization using Sobolev norms or the Fréchet space of functions of
rapid decay, as in the classical case.
When Irr(�) is finitely generated, Γ has RD wrt some ` iff it has RD wrt
to some word length.
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Rapid Decay Property RD

Rapid Decay

Fix a discrete quantum group �. Length function: ` : Irr(�)→ N s.t.
`(1) = 0, `(ᾱ) = `(α), `(γ) ≤ `(α) + `(β) if γ ⊂ α⊗ β.

Definition (V. 2007)

� has Property RD (with respect to `) if there exists P ∈ R[X ] s.t.
∀n ∈ N ∀x ∈ C ∗red(�) F (x) ∈ pnc0(�)⇒ ‖x‖ ≤ P(n)‖F (x)‖2.

Examples: [V. 2007, Brannan 2013]

unimodular groups with polynomial growth:
∑
{dim(Hα) | `(α) ≤ n}

≤ P(n), in particular duals of connected compact Lie groups

unimodular orthogonal and unitary free quantum groups, duals of
quantum permutation groups

Non-unimodular DQG do not have RD!
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Rapid Decay The non-unimodular case

The non-unimodular case

Idea: twist the 2-norm ‖a‖2 = ĥL(a∗a)1/2 [BVZ 2015].

For D ∈ c0(�)η s.t. DαFα ≥ 0 for all α, put ‖a‖2,D = ‖aD‖2.
These are still “easily computable” norms.

Definition (BVZ 2015)

� has Property RDD with respect to ` if there exists P ∈ R[X ] s.t.
∀n ∈ N ∀x ∈ C ∗red(�) F (x) ∈ pnc0(�))⇒ ‖x‖ ≤ P(n)‖F (x)‖2,D .

� has the twisted Property RD with respect to ` if it has RD√C with

Cα = qd(α)
dim(α) Fα.

Note: RD ⇔ RD1 ; C = 1 ⇔ � unimodular.

New examples: all groups with polynomial growth have twisted RD, e.g.
duals of q-deformation of connected compact Lie groups [BVZ 2015].
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Rapid Decay The non-unimodular case

Non-unimodular free quantum groups

We consider the case of � = FO(Q), Q ∈ GLN(C), QQ̄ = ±IN , N ≥ 2.
We use the word length `(αn) = n.

For N = 2 we recover the duals of SUq(2), q ∈ [−1, 1].
For N ≥ 3 FO(Q) has exponential growth.

Proposition (BVY 2021)

We have ∀n ∈ N ∀x ∈ C ∗red(FO(Q)) F (x) ∈ pnc0(FO(Q))⇒
‖p0xpn‖ = ‖F (x)‖2,DO(nk) iff ‖F−1/2n D−1n Fn‖‖F 1/2

n ‖ = O(nk). (∗)
For N ≥ 3, the non-unimodular FO(Q) do not satisfy RD√C .

Questions:

For FO(Q), is RDD equivalent to (∗)? At least if [Dn,Qn] = 0?

Find minimal D’s such that FOQ satisfies RDD .
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Rapid Decay Exponential estimates

Exponential estimates

One can always achieve RDD by taking a sufficiently rapidly growing D...
Consider the canonical central element B =

∑
‖Fα‖pα ∈ c0(�)η.

We have
√
C ≤ B, hence RD√C ⇒ RDB .

Proposition (Vaes-V. 2007)

FO(Q) satisfies RDB for all Q and N.

If � is non unimodular, B is exponentially growing (as well as C ).
However it is still usefull:

in [Vaes-V. 2007] to prove simplicity of C ∗red(FO(Q)),

in [V. 2012] to prove the vanishing of (twisted) L2-cocycles,

for hypercontractivity results...
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Hypercontractivity The heat semigroup on O+(Q)

The heat semigroup on O+(Q)

Write L∞(O+(Q)) = L(FO(Q)) = C ∗red(FO(Q))′′ ⊂ B(H).

Central symmetric quantum Markov semigroups Tt : L∞(O+
N )→ L∞(O+

N )
were classified in [Cipriani–Franz–Kula 2014] by an analogue of Hunt’s
formula. The generators decompose into a “jump part”, and a “gaussian
part” which corresponds to

Tt(x) = e−tλnx if F (x) ∈ pnc0(FON),

with λn = U ′n(q + q−1)/Un(q + q−1).

This justifies the analogy with the classical heat semigroup on ON .

We have λn = Cqn + Dq + o(1), thus (Tt)t is also analogous to the free
Poisson semigroup on L (FN).
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Hypercontractivity Ultracontractivity

Ultracontractivity

Put LP(G) = LP(L∞(G), h). Markov semigroups (Tt)t on L∞(G) extend
to Tt : LP(G)→ Lp(G) for all p ≥ 1.

Denote t∞ = inf{t > 0 | Tt(L
2(G)) ⊂ L∞(G)}.

The semigroup (Tt)t is ultracontractive if t∞ <∞.

[FHLUZ 2017] In the unimodular case, the heat semigroup on O+(Q) is
ultracontractive at all times (t∞ = 0).

Proposition (BVY 2021)

In the non-unimodular case we have
(2q + 2q−1 − 4) log ‖Q‖ ≤ t∞ ≤ (2q + 2q−1) log ‖Q‖

The upper bound results from RDB . The lower bounds follows from the
fact that (x 7→ x∗) is isometric for ‖ · ‖∞ but not for ‖ · ‖2.
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Hypercontractivity Hypercontractivity

Hypercontractivity

Denote tp = inf{t > 0 | ∀x ∈ L∞(G) ‖Tt(x)‖p ≤ ‖Tt(x)‖2}.
The semigroup (Tt)t is hypercontractive if tp <∞ for all p > 2.

Theorem (BVY 2021)

The heat semigroup on O+
N is hypercontractive and for all p ≥ 4 we have

N
2 log(p − 1) ≤ tp ≤ cp

N
2 log(p − 1) + εN

with limN∞ εN = 0, limp∞ cp = 1, cp ≤ 1.78.

Note: [FHLUZ 2017] already proves the estimate cp ≤ 1.83.

Tools. Khintchine inequalities for p ≥ 4: if F (x) ∈ pnc0(FON),

‖x‖p ≤ (C 2
q (n + 1))1−

3
p ‖x‖2.

Follows from complex interpolation between p =∞ (RD) and p = 4.
We also use the NC martingale convexity inequality of [Ricard–Xu 2016].
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Hypercontractivity Hypercontractivity

Hypercontractivity

Denote tp = inf{t > 0 | ∀x ∈ L∞(G) ‖Tt(x)‖p ≤ ‖Tt(x)‖2}.
The semigroup (Tt)t is hypercontractive if tp <∞ for all p > 2.

Theorem (BVY 2021)

The heat semigroup on O+
N is hypercontractive and for all p ≥ 4 we have

N
2 log(p − 1) ≤ tp ≤ cp

N
2 log(p − 1) + εN

with limN∞ εN = 0, limp∞ cp = 1, cp ≤ 1.78.

Note: [FHLUZ 2017] already proves the estimate cp ≤ 1.83.

Conjecture

We have tp = N
2 log(p − 1) + oN(1).

Note: tp = 1
2 log(p − 1) for the Poisson semigroup on L (FN), L (ZN).
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